Orthology and Phyletic Patterns Exercise 8

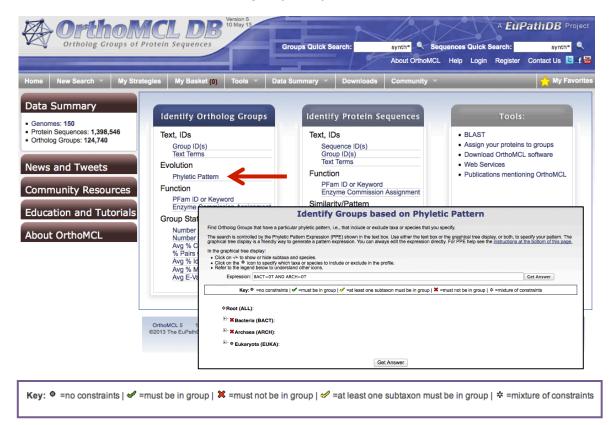
1. Getting to OrthoMCL from EuPathDB databases Note: For this exercise use <u>http://cryptodb.org</u> and <u>http://orthomcl.org</u>

- a. Go to the gene page for the Cryptosporidium parvum gene with the ID: cgd7_2290.
- b. What does this gene do? It is annotated as a hypothetical protein!
- c. Scroll down to the table labeled "Orthologs and Paralogs within CryptoDB". Does this gene have orthologs in other *Cryptosporidium* species? What about other organisms? (hint: click on the link below the table that takes you to OrthoMCL).

Orthologs a	and Paralogs	within CryptoD	B Hide
-------------	--------------	----------------	--------

Gene	Organism	Product	is syntenic	has comments
Chro.70261	Cryptosporidium hominis TU502	hypothetical protein	yes	no
CMU_034340	Cryptosporidium muris RN66	hypothetical protein, conserved	yes	no

d. Does this protein have orthologs in other organisms? Does it have any orthologs in bacteria or archaea?

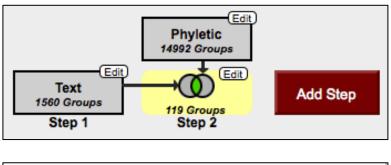

(hint: mouse over the colorful boxes in the table to reveal the full species and pylum names - see image below).

												G	rou	p: (OG	5_:	L27	67	9											
													(1	10 9	sequ	ueno	ces)													
												A	dd to Ba	sket) A	dd to Fa	vorites	\overleftrightarrow												
equend	ces &	Statis	stics	P	Fam	domai	ins (g	raphic	c)	PFa	m doi	mains	(deta	ails)	M	SA	Clu	ister g	graph											
hyletic	Distr	ibutio	on Hid	le																										
Leger	nd:													_					_											
			no ort							III 🛛	Ø FI	RM] Ø P	ROT			OBAC		: 🗆 🤅	AR	CH								
		1	one oi	rtholo	g					III 🗆	Ø EL	IGL	III [1 Ø 🗛	MOE	88		VIRI		: 🗆 🤅	AL	/E								
		n I	nore	than o	one o	rtholo	g				a 🗖	NG] Ø [OFUL	2			_								
												NO		191	IE IA	188	99	UEUr	N											
🗹 st	how la	abels																												
saur	cper	bant	Imon	spne	cbot	bmal	bpse	rsol	yent	sent	cbur	vcho	ypes	sfle	ftul	ecol	cjej	WSUC	rpro	wend	bsui	atum	rtyp 0	gsul	cpne	mtub	drad	deth	ctep	tmar
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	cjej 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	syne	rbal	tpal		nmar		smar	ssol			cmaq		nequ	halo	tvol	mmar		mjan		msmi	Ibra	tbru	Imex	tviv	tcon	tbrg	Imaj	linf	toru	einv
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	2	1	1	1	1	1	1	2	1
edis	ddis	ehis	gune	rcom 2	atha 3	osat	micr	ppat 2	otau	crei	vcar	tpse	cmer	tthe	pviv	pfal	pber	pyce	pkno	pcha	tpar	tann	bbov	cmur	tgon	ncan	cpar	chom	aory	ylip
	psti	ncra	scer		cimm	coos	calb	mgri	klac	dhan	anid	afum	0700	cala	ecun	eint	ebie	pchr	Ibic	cneg	0000	isca	dmel	2200	hmor	amel	cnin	phum	anie	agam
	Paul			1	1	1	2	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
spom 1	1	1	1 1																						_		<u> </u>		_	
1 nvec	1 tadh	1 drer	trub	tnig	cint	oana	mor	hsap	mmus	mdom	mmul	clup	ptro	ecab	ggal	cele	bmaa	cbri	sman	mbre	tvag	glae	glab	pram	glam					

- e. Take a look at the PFAM domain architectures found under the PFam domains (graphic) tab. Do all the proteins in this group have similar domain architecture?
- f. Based on the orthologs, what do you think this protein might be doing? If you had to give this gene a name, what would you call it?

2. Using the phyletic pattern tool in OrthoMCL Note: For this exercise use http://orthomcl.org/

a. How many protein groups in OrthoMCL <u>do not</u> have any orthologs in bacteria or archaea? (hint: go to the "Phyletic Pattern" search in the Evolution section of the "Identify Ortholog groups" category). To specify a phyletic pattern click on the icon next to the taxonomic group or species to include or exclude it.

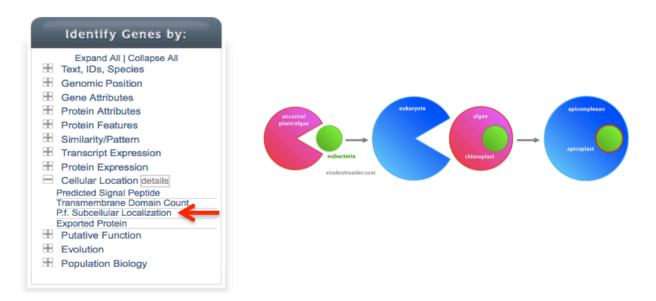


- b. How many protein groups do not contain orthologs from eukaryotes?
- c. Find all groups that contain orthologs from at least one species of *Cryptosporidium* and *Giardia* but not from bacteria or archaea.
- **NOTE:** All EuPathDB sites also have a phyletic pattern search that uses OrthoMCL data under Genes -> Evolution -> Orthology Phylogenetic Profile.

3. Combining searches in OrthoMCL

Find all plant proteins that are likely phosphatases that do not have orthologs outside of plants.

- a. Use the text search to find groups that contain the word "*phosphatase*".
- b. Add a step and run a phyletic pattern search for groups that contain any plant protein but do not contain any other organism outside plants. (hint: make sure everything has a red x on it except for plants (Viridiplantae (VIRI)), which should be a grey circle.).

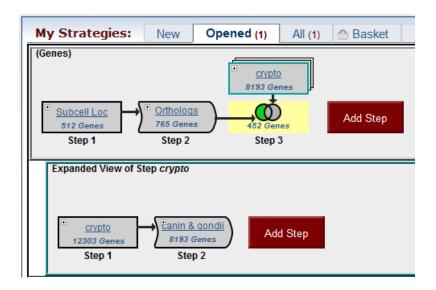


Sacteria (BACT):								
^{∃⊷} ≭Archaea (ARCH):								
[∃] ∗Eukaryota (EUKA):								
^{⊡∼} ¥Alveolates (ALVE):								
Ciliates (CILI):	×tthe							
[⊡] × Apicomplexa (APIC):								
Coccidia (COCC):	*chom	×cmur	×cpar	×ncan	≭tgon			
🖃 🛪 Aconoidasida (ACON):								
XHaemosporida (HAEM):	×pber	×pcha	×pfal	× pkno	Xpviv	Хруое		
¥Piroplasmida (PIRO):	×bbov	×tann	×tpar					
XAmoebozoa (AMOE):	≭ddis	×ehis	×edis	×einv				
¥Euglenozoa (EUGL):	× Ibra	×linf ×	Imaj 🔀I	mex Xtbr	ru 🗙tbrg	X tcon	×toru	×tv
[⊕] ♦ Viridiplantae (VIRI):								
Streptophyta (STRE):	● atha	[⊚] osat	[⊚] ppat	[⊚] rcom	[©] micr			
Chlorophyta (CHLO):	[●] crei	[●] otau	● vcar					
[®] Rhodophyta (RHOD):	● cmer							
© Cryptophyta (CRYP):	© gthe							
Bacillariophyta (BACI):	♦ tpse							
[⊡] ¥Fungi (FUNG):								
Microsporidia (MICR):	×ecun	×ebie	×eint					
XBasidiomycota (BASI):	Xcneo	Xcnea	XIbic	Xpchr				

c. How many groups did you return? Explore the multiple sequence alignments from some of these groups. (Hint: click on a group ID and open the MSA tab).

	Group: OG5_150204											
	(10 sequences)											
Add to Basket 🔐 Add to Favorites 分												
Sequences & Statistics PFam domains (graphic) PFam domains (details) MSA duster graph												
Phyletic Distribution Hide												
Legend: 0 no o	Sequences & Statistics PFam domains (graphic) PFam domains (details) MSA Cluster graph MUSCLE (3.7) multiple sequence alignment											
	ctau estExt_fgeneshl_pg.C_Chr_06											

- 4. (Optional) Using the orthology transform tool to identify apicoplast targeted genes in *Toxoplasma* and *Neospora*. Note: For this exercise use http://eupathdb.org
- a. Start by finding genes in *Plasmodium* that are predicted to target to the apicoplast. Hint: click on "Cellular Location" then on "P.f. Subcellular Localization"; see image below.



b. Transform the results of the above search to their *Toxoplasma* orthologs. Hint: add a step, then select "Transform by Orthology". On the search page, select all *Toxoplasma* and *Neopspora*.

	1	Add Step			
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight	•	Genes Genomic Segments (DNA) Motif) SNPs ORFs SAGE Tags	*	Text, IDs, Organism Genomic Position Gene Attributes Protein Attributes Protein Features Similarity/Pattern Transcript Expression Protein Expression Cellular Location Putative Function Evolution Population Biology	 4

c. Although *Cryptosporidium* is an apicomplexan parasite it has actually lost its apicoplast! Can you use this fact to refine your results from the above search?

Hint: try subtracting out any orthologs present in *Cryptosporidium*. You will need to use a nested strategy.

