Complex strategies with Genomic Colocation Exercise 10

1. Divergent genes with similar expression profiles. Note: for this exercise use <u>http://plasmodb.org</u>.

Identify genes that meet these four criteria:

- 1. are located within 1000 bp of each other.
- 2. are divergently transcribed.
- 3. are upregulated by at least 2-fold between between 24-48 hrs compared to 1-23 hrs.
- Hint: first use the "Genes bases on Microarray Evidence" -> "Erythrocytic expression time series (3D7,DD2, & HB3) (Bozdech et al. and Linas et al.)" and run a fold change search.

Fold Change Percentile Similarity	nutio Infaction Cuolo (fold change)
return protein coding + 2 Genes	Example showing one gene that would meet search criteria (Dots represent this gene's expression values for selected samples)
that are up-regulated +	Up-regulated
with a Fold change >= 2	
between each gene's average + expression value	Average
select all clear al expand all collapse all reset to default	Comparison 2 fold Average Reference Samples
and its average c expression value in the following Comparison Samples c extraction S	A maximum of four samples are shown when more than four are selected. You are searching for genes that are up-regulated between at least two reference samples and at least two comparison samples.
	For each gene, the search calculates: fold change = <u>average</u> expression value in comparison samples average expression value in reference samples
E: ₩ 31-48 Hours select all clear all expand all collapse all reset to default	and returns genes when fold change >= 2. To narrow the window, use the maximum reference value, or minimum comparison value. To broaden the window, use the minimum reference value, or maximum comparison value. See the detailed help for this search.
⊞ Advan	ced Parameters
Ge	t Answer

- Add a step that is the same as the first step and select the genomic colocation (1 relative to 2) operation.
- Set up the form to identify those genes that are transcribed on the opposite strand that have their starts located within 1000 bp of another genes start.

- Turn on the "Pf-iRBC 48hr Graph" column to assess how well the pairs of genes compare in terms of expression. The pairs of genes are located one above the other in the result table if sorted by location.
- Note that you could do similar types of experiments to look at potential co-regulation / shared enhancers / divergent promoters with other sorts of data such as:
 - Genes by ChiP-chip peaks in ToxoDB.
 - DNA motifs for transcription factor binding sites.
 - Of course other expression queries.
 - o Etc ...
- The screenshot below shows one way (there are MANY) to configure the genome colocation form to identify genes that are divergently transcribed located with their start within 1000 bp of each other.

Combine Step 1 and Step 2 using relative locations in the genome You had 684 Genes in your Strategy (Step 1). Your new Genes search (Step 2) returned 684 Genes.						
"Return each Gene from Step 1 + whose upstream region	overlaps 🛟 the	upstream region of a Gene in Step 2 and is on the o	pposite strand 🗘 "			
(684 Genes in Step)		(684 Genes in Step)				
Region	II	Region				
OExact		○ Exact				
Upstream: 1000 bp		• Upstream; 1 bp				
O Downstream: 1000 bp		O Downstream: 1000 bp				
Custom: begin at: start ↓ - ↓ 1000 bp end at: start ↓ - ↓ 1 bp		Custom: begin at: start end at: start bp				
	Submit		Close			

2. Finding possible oocyst expressed genes based on DNA motifs. Note: for this exercise use <u>http://toxodb.org</u>

In an earlier exercise you defined a number of *T. gondii* genes that are preferentially expressed in the oocyst stages. How can you use this information to expand the number of possible oocyst regulated genes? One possibility is to try and define common elements in promoter or 5'UTR regions (ie. 5' to the start of the genes). For this you will have to be able to retrieve 5' sequence from all of the genes in the oocyst list. How would you do this? (*Hint*: click on download genes then select FASTA format from the drop down menu). The amount of upstream sequence you retrieve is up to you.

After you have your sequences you will need to run them through a DNA pattern finder like MEME (<u>http://meme.sdsc.edu/meme/intro.html</u>). Results from a submission to MEME could take up to several hours so for your convenience 300

nucleotides upstream of all the oocyst results were analyzed using MEME – results can be visualized here:

Can you take one of the generated motifs and find additional genes in *T. gondii* that contain this motif in their upstream regions? What do your results look like? Did you get too many or too few results? How would you modify the motif to change your results?

3. Identifying conserved DNA elements upstream of genes

The goal of this exercise is to identify a DNA element in the upstream region of similarly regulated genes.

a. Identify genes that are up-regulated in malaria sporozoites compared to blood stage parasites. Examine the list of searchable experiments on the PlasmoDB microarray search page: Identify Genes based on Microarray Evidence. Can you identify an experiment that would give you this answer? (*Hint*: look at *Plasmodium* species other than *P. falciparum*, ie. *P. yoelii* [Liver, mosquito and blood stage expression profiles (Tarun et al.)]

Identify Ge	enes based on P.y. Liver Stages (fold change)
Comparison 😗	sgSpz vs BS 🗘
Fold change >= 😮	2
Direction 😮	up-regulated +
	+ Give this search a weight
	Give this search a name
	Get Answer

b. How many genes did you find? What you are interested in is looking at the nucleotide sequence upstream of the start sites of these genes. How can you do this in bulk? PlasmoDB has a sequence retrieval tool that allows you to download results of your searches in bulk. This includes a tool that allows you to specify the sequence you want.

My	My Strategies: New Opened (4) All (69) Basket Examples Heip							
(Gei	(Genes) Py Expression* 🖾							
	Rename Conv							
	Save As							
							Delete	
	Py Expression Ad	Step						
	75 Genes							
	Step 1							
-								
🗆 Fi	Iter results by species ()	suits removed by the filter will not be comb	ined into the ne	xt step.)				
All R	esults Ortholog Groups /	falciparum 3D7 P. falciparum IT P. v	ivax P. yoelii	P. berghei	P. chabaudi	P. knowlesi		
7	5 74	0 0 0) 75	0	0	0	\sim	
Py E	xpression - step	- 75 Genes					Add 75 Genes to Basket Download 75 Genes	
First	1 2 Next Last	Advanced Paging					Select Columns	
	🗢 Gene ID	Product Description 3	L				🗢 Fold Change 🚱	
	PY07678	hypothetical protein					5.1	
	PY05713	hypothetical protein					4.5	
	PY03168	circumsporozoite protein					4.4	
	PY03829	hypothetical protein					4.4	
	PY05712	hypothetical protein					4.4	
	PY00455	hypothetical protein					4.3	
	PY07137	Streptococcus pyogenes AMV156					4.3	
	PY02405	hypothetical protein					4.2	
	PY02432 hypothetical protein 4.2							
	PY07092	hypothetical protein					4.2	
	PY00204	hypothetical protein					4.1	
	PY03047	hypothetical protein					4.1	
	PY05602	hypothetical protein					3.8	
	PY01666	hypothetical protein					3.6	
台	PY01125	hypothetical protein					3.5	
105154	PY03831	hypothetical protein					3.5	

c. After you click on "Download ### Genes", you are offered a drop down menu of options. Explore these; which one will allow you to specify the sequence to download. (hint: Configurable FASTA)

d. Define the sequence you want to retrieve. For this exercise retrieve 500 nucleotides up-stream of the start of translation.

Download 75 Genes from the search:					
P.y. Liver Stages (fold change)					
Please select a format from the dropdown list to create the download report. **Note: Gene IDs will automatically be included in the report.					
Configurable FASTA \$					
This reporter will retrieve the sequences of the genes in your result. Choose the type of sequence: • genomic Oprotein OCDS Otranscript					
Choose the region of the sequence(s):					
begin at Translation Start (ATG) + 500 nucleotides					
end at Translation Start (ATG) + + 0 nucleotides					
Download Type: OSave to File OShow in Browser					
Get Sequences ••• Note: If UTRs have not been annotated for a gene, then choosing "transcription start" may have the same effect as choosing "translation start"					

e. The next step is to take this sequence and run it through a DNA motif finder such as MEME (<u>http://meme.sdsc.edu/meme/intro.html</u>). To speed up this process we have pre-run the motif finder and results are presented here:

Mo	tif Overvie	ew		
	<u>Motif 1</u>	5.5e-05846 sites	┊ ╢╢╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╵╵╵	* aaaaaa, aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
	<u>Motif 2</u>	 2.8e-029 46 sites		A A A A A A A A A A A A A A A A A A A
	<u>Motif 3</u>	9.3e-0055 sites	* LATING TO THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	¹ C TCHC A GAMATTALS ATATALAMA TA TA TA TA CALCULATE

The regular expression for each of these motifs is presented here:

Motif 1:

TTT[TAG]T[TA]T[CT][TA][TC][TC][ATC]TTTTT[TG]TTT[TC][TA]TTT[TA]TTTT[TA]T[TC][TA][TC][TA][TC]TT[TC]

Motif 2:

[TC]A[TC][AT][TC]AT[ATG]T[GTA][TC][AG][TA][GAT][TC][GA]T[AGT]T[GA][TC]AT[AG]T [GAT][TC][AT]T

Motif 3:

[GAC][AG][TC]AT[AG][TC][GA]T[TG][GT][TCG]CCA[TG][AG]A[TG][AG]A[TA][TG][TA][A T][TG][TG][AC]T[AGT][TC]A[CAT][AG][TA][AT][ACG][TCG]T[TA][CA]A[TC][GACTA][GC] [TG][GA][AG]A[GC]

f. Can you find any of these motifs in the *P. yoelii* genome? (*Hint*: use the DNA motif query)

Ientify Other Data Types: Iden	tify Genomic Segments based on DNA Motif Pattern
Expand AI Colapse AI Isolates Genomic Sequences Genomic Sequences Genomic Location P.f. eQTL HB3-Dd2 cross (segments by association to genes) SNPs ESTs Corport SACE Topes Exponential Sector Topes	elsm elsm
SAGE Tags	 Give this search a weight
	Give this search a name
	Get Answer

g. How many times did this motif occur in the genome? How many of them are in the upstream region of genes? Can you find all *P. yoelii* genes that are within 1000 nucleotides downstream of the motif? (*Hint*: use the genomic colocation option when combining searches).

	Genomic Colocation 🕫 🗢								
Combine Step 1 and Step 2 using relative locations in the genome									
	You had 1257 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 7774 Genes.								
"Return each	Gene from Step 2 ; whose upstream region	overlaps +	the	exact region	of a Genomic Segment in Step 1 and is on either strand +				
	(7774 Genes in Step)				(1257 Genomic Segments in Step)				
	Region	_			Region				
	Gene				Genomic Segment				
	OExact			●Exact					
	OUpstream: 1000 bp			OUpstream: 1	000 bp				
	ODownstream: 1000 bp			ODownstream	: 1000 bp				
	OCustom:			OCustom:					
	begin at: start \$ - \$ 1000 bp end at: start \$ - \$ 1 bp			begin at: end at:	start ≑ + ≑ 0 bp stop ≑ + ≑ 0 bp				
		Submi	t		Close				

h. Do these genes have orthologs in other *Plasmodium* species? (*Hint*: add a step to your search strategy and transform the results to their orthologs).

	Add Step	×
Run a new Search for Genes Transform by Orthology Genom Add contents of Basket Motif) Add existing Strategy SNPs Filter by assigned Weight ORFs SAGE T	Transform by Orthology Organiam estect al colar al expand al colapse al reset to default	Close