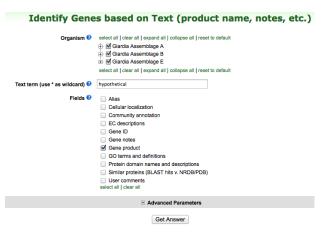
Sequence Exercises Motif Searches, Regular Expressions and Genomic Colocation

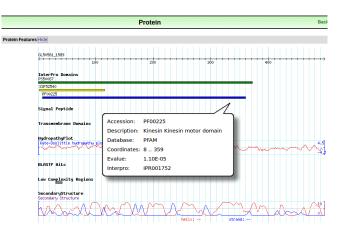

1. Using InterPro domain searches to identify unannotated kinesin motor proteins.

Note: For this exercise use http://giardiadb.org

a. Identify all genes annotated as hypothetical in all *Giardia* assemblages.

(Hint: use the full text search and look for genes with the word "hypothetical" in their product names)

b. How many of these hypothetical genes have a kinesin-motor protein PFAM domain?

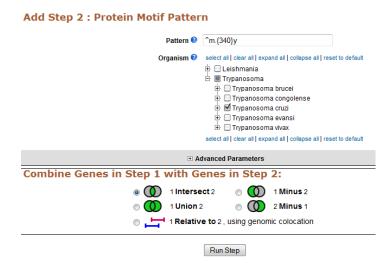

(Hint: add a step to the

strategy. Go to the "Interpro Domain" search under similarity/pattern, start typing the work kinesin and it should autocomplete.)

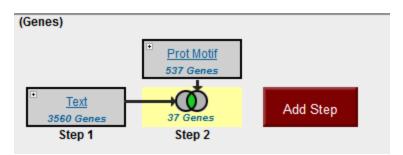
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight Transform to Compounds Genes Genomic Segments ORFs Text, IDs, Organism Genomic Position Gene Attributes Protein Attributes Similarity/Pattern Transcript Expression Cellular Location Population Biology Protein Motif Pattern InterPro Domain BLAST			
Run a new Search for Genes Text, IDS, Organism Protein Motif Pattern Transform by Orthology Add contents of Basket Genomic Segments Genomic Position InterPro Domain Add contents of Basket Add existing Strategy Filter by assigned Weight Filter by assigned Weight Protein Attributes Protein Features Transform to Pathways Transform to Compounds Compounds Cellular Location Protein Expression Cellular Location Population Biology Colose Colose		Add Step	×
·····,	Transform by Orthology Geno Add contents of Basket ORFs Add existing Strategy Filter by assigned Weight Transform to Pathways	mic Segments Genomic Position Gene Attributes BLAST BLAST Protein Attributes Similarity/Pattern Transcript Expression Protein Expression Cellular Location Putative Function Evolution	-
·····,	Canas)	(a) Add Sten	(*)
Aud Step 2 : InterPro Domain	Selles)	5 ²⁷ •	
Text 14987 Genes Add Step Step 1 Organism ● select all colar all expand all colarpse all reset to default	14987 Genes Add Step	Organism ● select all clear all expand all collapse all reset to default ⊕ ●	
Specific Domain(s) Image: Specif		Beer Orial PF06920 : Ded_cyto Dedicator of cytokinesis Free Text (use "" for wildcard) PF05804 : KAP <u>Knesin</u> -associated protein (KAP) PF00225 : <u>Knesin</u> Kinesin motor domain	
Combine Genes in Step 1 with Genes in Step 2:			
(i) 1 Intersect 2 (ii) 1 Intersect 2 (iii) 1 Intersect 2 (iiii) 1 Intersect 2 (iiii) 2 Minus 1 (iiiiii) 2 , using genomic colocation		🔾 🔘 1 Union 2 🔷 🔘 2 Minus 1	

c. Go to the gene page for GL50581_1589 and look at the protein feature section. Does this look like a possible motor protein?

Hint: click on the ID for GL50581_1589 in the result table to go to the gene page. Scroll down to the protein section and mouse over the glyphs in the Protein Features graphic.


2. Using regular expressions to find motifs in TriTrypDB: finding active transsialidases in *T. cruzi*.

Note: for this exercise use http://tritrypdb.org

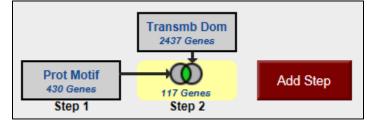

- **a.** *T. cruzi* has an expanded family of trans-sialidases. In fact, if you run a text search for any gene with the word "trans-sialidase", you return over 3500 genes among the strains in the database!!! Try this and see what you get.
- b. However, not all of these are predicted to be active. It is known that active trans-sialidases have a signature tyrosine (Y) at position 342 in their amino acid sequence. Add a motif

search step to the text search in 'a' to identify only the active transsialidases.

Hint: for your regular expression, remember that you want the first amino acid to be a methionine, followed by 340 of any amino acid, followed by a tyrosine 'Y'. Refer to <u>regular</u> <u>expression tutorial</u> if you need to.

If you need help, you can go to this sample strategy below to see the answer: <u>http://tritrypdb.org/tritrypdb/im.do?s=a905e36f634f7b42</u>

3. Using regular expressions to find motifs in CryptoDB: finding genes with the YXXΦ receptor signal motif

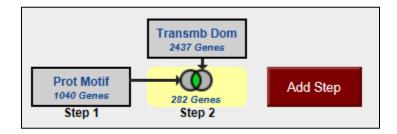

Note: for this exercise use http://cryptodb.org

- **a.** The YXXΦ (Y=tyrosine, X=any amino acid, Φ=bulky hydrophobic [phenylalanine, tyrosine, threonine]) motif is conserved in many eukaryotic membrane proteins that are recognized by adaptor proteins for sorting in the endosomal/lysosomal pathway. This motif is typically located in the c-terminal end of the protein.
- b. Use the "protein motif pattern" search to find all *Cryptosporidium* proteins that contain this motif anywhere in the terminal 10 amino acids of proteins. (hint: for your regular expression, remember that you want the first amino acid to be a tyrosine, followed any two amino acids, followed by any bulky hydrophobic amino acid (phenylalanine, tyrosine, threonine). Refer to regular expression tutorial if you need to).

Ident	ify Genes based on Protein Motif Pattern
Pattern 📀	
Organism 😢	select all clear all expand all collapse all reset to default Cryptosporidium hominis Cryptosporidium muris Cryptosporidium parvum select all clear all expand all collapse all reset to default
	Advanced Parameters

Get Answer

c. How many of these proteins also contain at least one transmembrane domain.



d. What would happen if you revise the first step (the motif pattern step) to include genes with the sorting motif in the C-terminal 20 amino acids? (hint: edit the first step and modify your regular expression).

	•					
Revise Step 1 : Protein Motif Pattern						
Pattern 😢	y[fty].{0,16}\$					
Organism 😢	select all clear all expand all collapse all reset to default Cryptosporidium hominis Cryptosporidium muris Cryptosporidium parvum select all clear all expand all collapse all reset to default					
	Advanced Parameters					

Here is a saved strategy that provides you with the results of the above search:

http://cryptodb.org/cryptodb/im.do?s=928309b4c1b9ef3f

4. Identification of specific DNA motifs. For this exercise use <u>http://microsporidiadb.org</u>

a. Find all *Bam*HI restriction sites in all microsporidia genomic sequences available in MicrosporidiaDB. Note: you can use the DNA motif search to find complex motifs like transcription factor binding sites using regular expressions.

Hint: *Bam*HI = GGATCC and the DNA motif search is under the heading "Genomic Segments".

Identify Genes by:	Identify Other Data Type	s: Tools:
Expand All Collapse All Text, IDs, Organism Genomic Position Gene Attributes Protein Attributes Protein Features Similarity/Pattern Transcript Expression Cellular Location Putative Function	Expand All Collapse All Expand All Collapse All Esolates Genomic Segments (DNA Moti DNA Motil Pattern Genomic Location Ests ORFs Identify Genomic	BLAST Identify Sequence Similarities Sequence Retrieveal Retrieve Specific Sequences using IDs and coordinates Pathogen Portal RNA sequence analysis, interactione mates and more Segments based on DNA Motif Pattern
ℜ Evolution	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
		elect all clear all expand all collapse all reset to default
		Advanced Parameters
		Get Answer

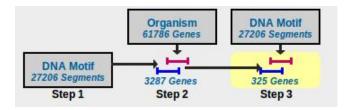
b. How many times does the *Bam*HI site occur in the genomes you searched? Take a look at your results; notice the Genomic location and the Motif columns.

ly Strategies: New	Opened (1) All (1)	Basket Public Str	ategies (5)	Help				
egments)					S	trategy: I	DNA Motif *	×
DNA Motif 27206 Segments Step 1	Step						Rena Duplic Save Sh Del	ate As are
206 Conomio Sogmont	c from Stop 1							
	s from Step 1	Add 27206 Geno	omic Segments	s to Basket	Downloa	d 27206 (Genomic Seg	gment
trategy: DNA Motif	Genomic Locations	Add 27206 Geno	omic Segments	s to Basket	Downloa	d 27206 (Genomic Se	gment
trategy: DNA Motif		Add 27206 Geno	omic Segments	s to Basket	Downloa	d 27206 (Genomic Seq Add Co	
Genomic Segment Results	Genomic Locations	Add 27206 Geno	omic Segments	s to Basket	Downloa	d 27206 (2	
trategy: DNA Molif Genomic Segment Results First 1 2 3 4 5 Next Last	Genomic Locations Advanced Paging		Motif Q				2	lumns
	Genomic Locations Advanced Paging Crganism	Genomic Location 3	Motif Q	GCAAATTTA	IGGATCCGC	TGTTATCC	Add Co	lumns

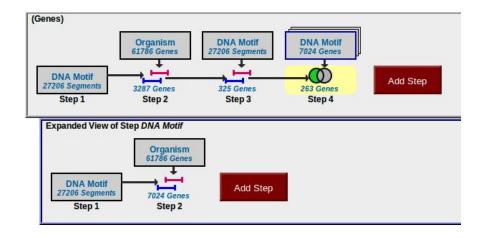
c. Find genes that have one of these *Bam*HI sites within 500 nucleotides upstream of their start.

In section 1 you found *Bam*HI sites, but now you are looking for genes that have one of these sites located within 500 nucleotides upstream of their start.

Hint: You can achieve this by running a genomic collocation search that defines the genomic relationship between the *Bam*HI sites and genes. Add a "Genes by Organism" step to the motif search and select the "1 relative to 2, using genomic locations" option.

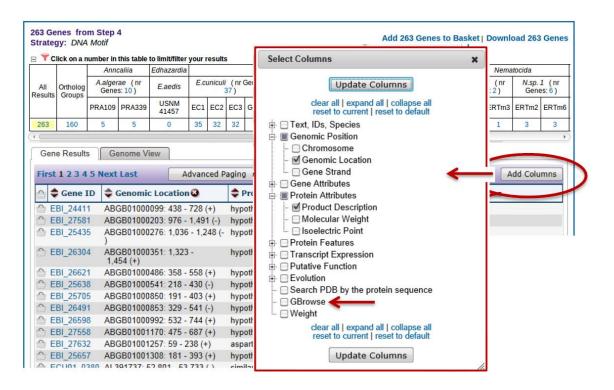

<pre>(Federated all and all all all all all all all all all al</pre>	My Strategies: New	Opened (1) All (1) 🕼 Basket Examples Help
<complex-block></complex-block>	(Segments)	
We way		Duplicate
Step1 Add Step 2 T22005 Genomic Segments from Step Name Steakther 2 First 224 5 Noclast Advance Strategy: DNA Modifier First 224 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier First 224 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier First 244 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier First 244 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier First 244 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier First 244 5 Noclast Advance Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier KX558017400-061 Anotalia algerae PRA109 Intersect 21 Strategy: DNA Modifier Strategy: DNA Modifier Add Step 2: Organise Intersect 21 Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier Add Step 2: Organise Intersect 21 Strategy: DNA Modifier Strategy: DNA Modifier Strategy: DNA Modifier Intersect	DNA Motif	Delete
ZZC06 Geometris from Step Internet factor is building of the PALL of	27206 Segments Step 1	
27200 Genomic Segments from Step Add Step If a control is gain and and and and and and and and and an	i in an Association F	Add Step 🙀
22 do denomic Segments Broit Step and Step 2 wing relative to a data step 2 wing relative to		Add contents of Basket Canomic Segments (DNA)
And Step 3 First 123 45 Noxt Lat Anano In a new Search for Assisting States Green Esgenets (D) In sequence Pasts Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a new Search for Assisting States Green Esgenets (D) In a ne		Add existing Strategy Motify
Carbonic Log Provide and the control of the contro	57	Add Step 2
First 24 45 Next Last Advance Advance Advance Advance Advance Advance Advance Avance Advance Advance Advance Ad	Genomic Segment Results	Genomic Lo
Image: Segment ID Im	First 1 2 3 4 5 Next Last	Advance Add contents of Basket Genomic Segments (DNA) Genomic Position etc.)
Anncalia algerae PRA109 KK358017490-4967 Anncalia algerae PRA109 Add Step 2: Organism Organism * sec.el deteral concal deteral concal freet backat I det concalia a lagerae DA100 Add Step 2: Organism Organism * sec.el deteral concal freet backat I det concalia a lagerae DA100 I det concalia a lagerae DA100 Organism * sec.el deteral concal freet backat I det concalia a lagerae DA100 <td>💮 韋 Segment ID</td> <td>Organis Filter by Weight ORFs Protein Attributes Organism Protein Features User Comments</td>	💮 韋 Segment ID	Organis Filter by Weight ORFs Protein Attributes Organism Protein Features User Comments
Image: Status	KK358017:490-496:f	Anncaliia algerae PRA109
Model Add Step 2: Organism	MK358017:490-496:r	Anncaliia algerae PRA109
<pre></pre>	HK358017:6265-6271:f	Annesiis sheese DRA100
upper valid of sector all (calcular all (
<pre></pre>		Organism 🐨 select all clear all expand all collapse all reset to default
<pre> # Cirrenco_fizzoon # Missema # Missema</pre>		🗄 🗹 Edhazardia
<pre> # groupens # groupens</pre>		
<pre> # @ Tarabiagebona # Wavaisa # Wavaisa</pre>		🗄 🗹 Nosema
<pre></pre>		⊕ ⊠ Spraguea ⊕ ⊠ Trachipleistophora
setect al deter al opter al opter al inset to advant • Advanced Parameters Combine Genomic Segments in Step 1 with Genes in Step 2: • 1 Intersect 2 • 1 Intersect 2 • 1 Relative to 2, using genomic colocation Combine Step 1 and Step 2 using relative locations in the genome Colocation • • • • • • • • • • • • • • • • • • •		
Combine Genomic Segments in Step 1 with Genes in Step 2: Intersect2 Intersect2 Interse		
Intersect? Intersect? Intersec		Advanced Parameters
Union 2 U		
I Relative to 2, using genomic colocation Construction Colocation Colocation Combine Step 1 and Step 2 using relative locations in the genome You had 27206 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 61786 Genes. ach Gene from Step 2 • whose upstream region (62786 Genes in Step) (7286 Genomic Segments in Step) <td></td> <td></td>		
Cenomic Colocation 2 Combine Step 1 and Step 2 using relative locations in the genome You had 27206 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 61786 Genes. Ach Gene from Step 2 • whose upstream region (61766 Genes in Step) • the exact region of a Genomic Segment in Step 1 and is on either strand (61766 Genes in Step) • the exact region of a Genomic Segment in Step 1 and is on either strand (61766 Genes in Step) • the exact region of a Genomic Segment in Step 1 and is on either strand (61766 Genes in Step) • the exact region of a Genomic Segment in Step 1 and is on either strand (61766 Genes in Step) • the exact region of a Genomic Segment in Step 1 and is on either strand (7206 Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1 and is on either strand (7206 Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1 and is on either strand (7206 Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region of a Genomic Segment in Step 1) • the exact region in the e		
Combine Step 1 and Step 2 using relative locations in the genome You had 27206 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 61786 Genes. ach Gene trom Step 2 whose (61766 Genes in Step) overlaps (61766 Genes in Step) if (77206 Genomic Segments in Step) if (77206 Genomic Segment in Ste		
Combine Step 1 and Step 2 using relative locations in the genome You had 27206 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 61786 Genes. ach Gene trom Step 2 whose (61766 Genes in Step) overlaps (61766 Genes in Step) if (77206 Genomic Segments in Step) if (77206 Genomic Segment in Ste		Genomic Colocation
ch Gene from Step 2 whose upstream region overlaps the exact region of a Genomic Segment in Step 1 and is on either strand (61766 Genes in Step) (27206 Genomic Segment is in Step) (27206 Genomic Segment is in Step) Gene (27206 Genomic Segment is in Step) (27206 Genomic Segment is in Step) Gene (27206 Genomic Segment is in Step) (27206 Genomic Segment is in Step) Gene (27206 Genomic Segment is in Step) (27206 Genomic Segment is in Step) Devine Step in attriation (27206 Genomic Segment is in Step) (27206 Genomic Segment is in Step) Custom: (2000 bp) (2000 bp) (2000 bp) Custom: (2000 bp) (2000 bp) (2000 bp)		
(61766 Genes in Step) (61766 Genes in Step) Gene Cene Canomic Segments in Step) Region Genomic Segment Cenomic Segment Cupstream: 1000 bp Coustom: begin at start = - = 500 bp	You had 27	7206 Genomic Segments in your Strategy (Step 1). Your new Genes search (Step 2) returned 61786 Genes.
(61766 Genes in Step) Region Gene Carce	ach Gene from Step 2	* whose upstream region overlaps * the exact region of a Genomic Segment in Step 1 and is on either strand
Region Gene © Exact © Upstream: 500 bp Downstream: 1000 bp Custom: begin at: start \$; . \$; 500 bp		
Gene Genomic Segment Exact © Exact Upstream: 500 bp Downstream: 1000 bp Downstream: 1000 bp Downstream: 1000 bp Custom: Custom: begin at: start \$ - \$ 500 bp begin at: start \$ - \$ 0 bp	(6178	86 Genes in Step) (27206 Genomic Segments in Step)
Exact Image: Exact Upstream: 500 bp Upstream: 1000 bp Downstream: 1000 bp Downstream: 1000 bp Custom: Custom: begin at: start \$ - \$ 500 bp bp	Region	Region
• Upstream: 500 bp Upstream: 1000 bp • Downstream: 1000 bp Downstream: 1000 bp • Custom: Custom: begin at: start \$; - \$; 500 bp		Genomic Segment
• Upstream: 500 bp Upstream: 1000 bp • Downstream: 1000 bp Downstream: 1000 bp • Custom: Custom: begin at: start \$; - \$; 500 bp		
Downstream: 1000 bp Downstream: 1000 bp Custom: Custom: begin at: start \$; - \$; 500 bp begin at: start \$; - \$; 0 bp		
Custom: begin at start ♀ - ♀ 500 bp begin at start ♀ - ♀ 0 bp	Gene	
begin at: start 🗘 - 🙄 500 bp begin at: start 🗘 - 🙄 0 bp	Gene Exact Upstream: 500 bp	O Upstream: 1000 bp
	Gene Exact Upstream: 500 bp Downstream: 1000 b	Downstream: 1000 bp
	Gene Exact Upstream: 500 bp Downstream: 1000 b Custom:	bp Downstream: 1000 bp Custom:
	Gene Exact Upstream: [500 bp Downstream: 1000 b Custom: begin at start ‡	bp Custom: - \$ 500 bp begin at: start \$ - \$ 0 bp

"Return each	Gene from Step 2 whose upstre	eam region
	(12339 Genes in Step)	
	Region	
	Gene	
	© Exact © Upstream: 500 bp	
	Upstream: 500 bp Downstream: 1000 bp	Organis 61786 Ger
	© Custom:	(Edit)
		DNA Motif 27206 Segments 3287 Gen
	end at: start 1 bp	Step 1 Step 2


How did you modify the location relative to genes? How many genes did you get?

-

d. Using a similar sequence of steps as in part 2, define which of these genes also have a *Bam*HI site in their 500 nucleotide downstream region. *Hint:* after you click on add step you will have to select DNA motif search and select the genomic collocation option.


e. Taking this a step further, define which of these genes do NOT contain a *Bam*HI site within them.

Hint: you will have to use a nested strategy.

Look at your results. Do they make sense? Confirm your results by looking at one of the genes in Gbrowse and showing *Bam*HI restriction sites.

Note: you can add a column to any result table that allows you to go directly to GBrowse at the genomic coordinates of any ID in your result list. Click on the Add Columns button.

Note: you can configure restriction sites by clicking on the configure button in GBrowse and selecting the restriction sites you would like to display. To view restriction sites, the "Restriction Sites" data track must be turned on. Go to the "Select Tracks" page and click "Restriction Sites" under the "Analysis" section.

Browser	Select Tracks	Snapshot	s Custom Tracks	Preferences						
Search										
Landmark	or Region:				Annotate Re	estriction Sit	tes	- Conf	igure G	0
NC_00322	9:162,593182,592	2	Search		Save Snar	oshot Lo	ad Snapsho			
					·					
Data Source Microsporid	:e iaDB GBrowse v2	2.48			Scroll/Zoom	n: <mark><< <</mark> —	Show 20 I	kbp 💌		Flip
Overview	NC_0032	29								
	0k 10k	20k 30ł		 70k 80k			130k 140	ninini ok 150k	160k 170k	180k 190k
Region										
	<		40k 50k 60k		90k 100k	110k 120k			160k 170k	180k 190k
Details	1.1.1.1.1.1		E lib							
		29: 20 kbp	5 kb				The restriction s	ite plugin gen	erates a restricti	on map on the current v
	163k 1	6 <mark>4k 165k 1</mark>	166k 167k 168k 1	59k 170k 171k			This plugin was Cancel C	written Elizat	eth Nickerson &	Lincoln Stein.
* = 🗙 🖻 🖉 🛙	Annotated Genes ECU02_136		gray when available) ECU02_1380	CU02_1400	ECU02_1420 ECI	102 1440 5	Select Restric		Annotate	
		U02_1370	ECU02_1390	ECU02_14			Restriction Sit			
	-	002_13/0		2002_14	• <u> </u>		🗖 Aatll	BspDI	E Hpall	PspGl
							Acc65I	BspEl	Hpy188I	PspOMI
							Accl	BspHI	Hpy188	Pstl
				Select Tracks	Clear highlig	hting	Acli	BsrFl	Hpy99I	Pvul
							Afel	BsrGl		Pvull
							Afili	BssHII	HpyCH4IV	
							Afilli	BssKl	HpyCH4V	
							Agel	BstAPI	Kasl	Sacl
							🖾 Ahdi	BstBl	E Kpnl	Sacli
							Alul	BstEll	Mbol	
								BstNI	Mfel	Sau3Al
							Apal	BstUl	Mlul	Sau96l
							C ApaLI	BstXI	Mscl	Sbfl
								BstYl	Msel	
							Ascl	BstZ17I	Msll	ScrFI
							Asel	Bsu36l	MspA1	SexAl
Overview										
Overview	AL59044									
	0k 10k	: 20k 30	k 40k 50k 60k	70k 80k	90k 100k :	110 k 120k	130k 140	 k 150k	160k 170k	180k 1 90k
Region										
	0k 10k	20k 30	k 40k 50k 60k	70k 80k	90k 100k :	110k 120k	130k 140	k 150k	160k 170k	180k 1 90k
Details			10 kbp 🛏							
	AL59044	12: 30.81 kb	P							
	Restriction Sites	160k		170k				180k		
BamHI rest										
		BamHI		BamHI	BamHI					
					BamH	I				
* = × 5 2 2			gray when available)							
		10 ECU02_1340				2_1440 ECU		102_1480	ECU02_150	
	ECU02_			_1380 ECU02_140		ECU02_14	150 ECU02.	-	ECU02_15	
		ECU02_1330 E	CU02_1360		ECU02_14	30		ECU02_149	ECL	02_1520