
Analysis of RNA-Seq

Introduction

RNA-Seq & 
Differential Expression

Understanding the genome is not simply about understanding which genes are there. 
Understanding when each gene is used helps us to find out how organisms develop and 
which genes are used in response to particular external stimuli. The first layer in 
understanding how the genome is used is the transcriptome. This is also the most 
accessible because like the genome the transcriptome is made of nucleic acids and can 
(indirectly) be sequenced using the same technology. Arguably the proteome is of greater 
relevance to understanding cellular biology however it is chemically heterogeneous 
making it much more difficult to assay. 

Over the past decade or two microarray technology has been extensively applied to 
addressing the question of which genes are expressed when. Despite its success this 
technology is limited in that it requires prior knowledge of the gene sequences for an 
organism and has a limited dynamic range in detecting the level of expression, e.g. how 
many copies of a transcript are made. RNA sequencing technology, using for instance 
Illumina HiSeq machines, can sequence essentially all the genes which are transcribed 
and the results have a more linear relationship to the real number of transcripts generated 
in the cell.

The aim of differential expression analysis is to determine which genes are more or less 
expressed in different situations. We could ask, for instance, whether a pathogen uses its 
genome differently when exposed to stress, such as excessive heat or a drug. What 
happens if a gene gets silences (this exercise), and how does that change the 
transcription profile? Alternatively we could ask what genes make human livers different 
from human kidneys. 

In close future we are going to be able to sequence routinely sequence single cells from 
organisms, understanding the heterogeneity of complex beings… but let’s focus on this 
exercise and malaria.
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The first RNA-Seq study in Plasmodium parasites focused on P. falciparum (Otto et. al. 2010).
The aim was to show the viability of the RNA-Seq protocol in comparison to microarrays and
also to improve the genome annotation and find alternative splicing. Recently a group used RNA-
seq to identify differentially expressed genes, showing that parasites from vector transmitted
infections are less virulence than serially blood passaged in the laboratory (Spence et al. 2013). In
PlasmoDB there are more than 20 transcriptome for Plasmodium, and many more for the other
parasites. Let’s start to have a look at one:

Exercise
In this exercise you will need to determine the function of a gene that was knocked out. Your task
is to find out the function of this gene, off you go!

5’ UTR Exon 1 Exon 2 Exon 3 3’ UTR

Reads belonging to the transcript are produced by the sequencing process. 

When the reads come out as raw data, there is no information about where they belong on the 
reference genome. What is more, all reads from several different transcripts come out together. 
An alignment algorithm finds where they belong in the reference genome based on similarity 
matches.

The plots shown above the 
gene models (red and green 
lines) represent the number 
of reads that align to the 
genome at each base 
position. This allows us to 
identify coding regions: 
exons (yellow) and UTRs 
(white).

Here how RNA-Seq is working in a more visual way … imagine this transcript is present in 
the sample
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First, change to the directory ~/Module_4_RNA-Seq and check if you are in the correct directory 
(pwd).

For the mapping, first an index of the reference (PbANKA_v3.fasta) must be constructed with 
hisat2-build. On the command syntax is: (Remember the names in italic are variables that you 
have to set!)

$ hisat2-build reference_file index_name

As index name you can use for example PbANKA_v3. 

This will generate the index need for the mapping. Most of the output you can ignore. Hisat2 is an 
improved version of tophat which is several times faster. To start the command you should type:

$ hisat2 -p 2 --max-intronlen 10000 -x index_name -1 reads_1 -2
reads_2 –S WT1.sam

The read file are called WT1_1.fastq.gz WT1_2.fastq.gz and the index_name you gave, 
see above. 

The results of the mapping is in WT1.sam. The –p 2 option runs the mapping on four processors -
why not using them if they are there?

Now you have to transform the WT1.sam file into a bam file and index it. Do you remember the 
command from yesterday? It was something with samtools, sort and index….

Check that your bam files exists by getting the mapping stats:
$ samtools flagstat WT1.bam

If that worked, we need to clean up, as those files are pretty huge. Now that we have the bam file, 
we don’t need the sam file anymore. Let’s have a look at the files
$ ls -lrS

As in the mapping exercise, is the sam file non empty? You can see the large file called WT1.sam. 
If the bam file was created correclty, you can delete it with 
$ rm WT1.sam

A. Mapping with HiSat2

We have two conditions, wildtype (WT) and knock out (KO). First we are going to focus 
on the WT and map the reads against the reference genome of  Plasmodium berghei.  The 
tool we are using, HiSat2 is rather fast, but we did decrease the amount of reads to 30% for 
speed and space issues, compared to the original data.

In the directory of the module (Module _4 _RNA-Seq1) you can find the Plasmodium
chromosome genome reference sequence (PbANKA_v3.fasta) as well as the two files 
of RNA-seq reads of the WT: WT1_1.fastq.gz and WT1_2.fastq.gz.
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1. Now click on File 
-> “Reads BAM/ 
VCF…”

2. Select here the bam file you just generated 
(WT1.bam?) and then press ok.

4. You should see following window… 
any idea what it means?

3. Confirm that the 
correct chromosome 
is chosen. 

We will now examine the read mapping in Artemis using the BAM view feature.
Be sure to be in the same directory as before. Open Artemis and load 
PbANKA_14_v3.embl. This file contains the sequence of chromosome 14 and the 
annotation. Here is also the gene that was knocked out. 
$ art PbANKA_14_v3.embl &    ### to open Artemis

First go to the position 2308000 (Goto -> navigator). 

B. Viewing the mapped reads in Artemis
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Congratulations, you have opened a Malaria chromosome with RNA-Seq mapping on it! 
The horizontal blue/green lines are sequencing reads, mapped against the reference. Let’s 
have a look how the reads are “mapped” against the reference.

Right click in “BAM 
view,, select Graph -> 
Coverage. Then zoom 
out again

1. Zoom in as much 
as you can

Each sequence represents a read. It is very similar to 
the genomic sequence at this regions, and therefore 
was mapped at this position. The abundance of reads 
represents the amount of mRNA of this gene.

Those reads are mapped over a 
splice site. The bar shows the 
intronic regions, which should 
be skipped in the reads. Can you 
see where the other parts of the 
reads are mapping?

This is the so-called one-
base pair resolution of 
RNA-Seq!
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C. Interpreting the mapping

Zoom out until you have the same view as below:

Please discuss following aspects with your neighbour:

The coverage represents the amount of reads mapped over each position. Why are reads 

mapped where no exons are? Can you distinguish transcription starts and stops of genes?

Notice that different genes have different depths of coverage. What does this means? 

Scroll through the genome and look at half a dozen genes, also some longer ones.

Why do some genes have less coverage? Have some genes no reads mapped to them? Is the 

coverage very even over longer genes?

To better see the splice sites, do right click.

Select “Options…”:

Set the window size to 1 (before unselect 

“Automatic…”)

You can increase the size 

of the bam view, by 

dragging down with the 

mouse.

You can move the reads up 

and down, on the right 

scroll bar.
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Actually, these data are strand specific! This means that from the reads you can determine 
the orientation of the transcript. This is useful to find RNA reverse tanscribed of genes. 
That might help also  answer some questions, like were genes start, when they are head to 
head.

2. Right click, -
>Filter Reads…

3. Show the 
second pair

1. Right click, -
>View -> strand 
stack

4. Right click, on 
plot, -> Options 
-> plot by strand!

NICE!
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Go to the position 16000 (Goto -> navigator).

D. Uniqueness and GC content

1. Enable the GC 
content, Graph -> GC 
Content.

2. Change the window 
size

3. What are those 
peaks? Is there a 
correlation to the GC 
content?

4. You can filter reads by 
mapping quality and if 
they are mapped as proper 
mate pairs.

5. Right click, 
than Filter 
Reads…

6. Set the mapping 
quality to 10 and show 
proper pairs. What 
happens?

What does that mean 
for the expression 
values of those genes?

Variation in coverage can have many reasons, one is GC content. Also 
important, reads can be placed more than once, when they are mapped 
repetitively. More conservative mapping is to just look at proper pairs, 
and ignore reads with a mapping quality score below 5.
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E. Including the mutant data set

Next we want to include the mutant (knock out) data set.

The reads of the KO parasite are in directory bam. 

Right click here,
select add BAM

In the BAM view of the reads, it might be difficult to distinguish the differences between 
the two different BAM files (data sets). But in the coverage plot, one can see the 
differences in coverage by the color. You can color the read by the coverage plot (right 
click BAMview -> color by -> Coverage plot colors.

First have a look at the knock out gene (PBANKA_KO). Is it really knocked out?

Include the file KO1.bam from the 
bams directory.
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It seems quite convincing that this gene is not expressed at all in the mutant (blue 
coverage plot). So the knock out seem to have worked. Interestingly, it is just a little bit 
expression in the WT… can that be an important gene after all?

Skim through the genome and compare the expression (coverage plots) between the two 
conditions. Again discuss the following questions with your neighbour or a tutor:

Which genes have extreme different coverage? Find a few and write the gene id numbers 
down. 

Is it enough to look at raw coverage, or would you need some kind of normalization?
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You have seen that the coverage varies between the two samples and it is difficult to 

compare. One possibility of normalizing the data is to generate the RPKM for each gene. 

RPKM stands for reads per kilobase per million mapped reads. It is a measure of how 

many reads map to a gene, normalized by the gene length and by the amount of mapped 

reads in the run.

F. Normalization - RPKM 

1. Select all genes by: 

Click on Select -> All 

CDS Features

2. Right click on the BAM 

view -> Analysis -> 

RPKM values of selected 

features… 

3. Unselect “Intron 

included”

4. Wait until the box says 

it is done.

Maybe take a break to do 

some stretching for your 

back… at home this will 

take longer. It is faster to 

use local copies of the 

BAM files!

5. The upcoming window will have RPKM values for each gene, 

for both the WT and the mutant. This will be split by strand of the 

DNA and a total score for both strands of DNA.

Save the file as Pb_RPKM.csv. This one you could load into 

LibreOffice (Excel), but here we are going to use a Linux “one-

liner”.
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If your values are different - maybe you 
filtered the reads differently, and that is 
no problem at all! 

Open at least the two marked genes in 
PlasmoDB (http://plasmodb.org) and 
enter the first (yellow) gene id.

1. Type the 
gene IDs in 
here.

4. The genome of P. 
falciparum 3D7 has a far 
richer annotation, so 
let’s look at the 
orthologue.

2. Read the gene page. Does it tell 
you about the function of the down 
regulated gene?

Now we would like to know which genes have the biggest difference in terms of expression 
between them. One way is to generate the ratio of the RPKM of WT and KO and look at the 
most extreme values. This can be done very easily on the command line:

$ awk ’$4>100{print $1,$4,$7,($4/($7+0.001))}’ Pb_RPKM.csv | 
sort -rnk 4 | head -n 20
The awk commands can access columns in a file (like Excel) and do mathematical operations 
in this case the ratio. We just want genes that are expressed ($4>100).The output is piped into 
the sort program, that sort numeric reverse and column 4 (k). And we are just interested in 
the top 20 lines (head -n 20). 

What happened if you try tail instead of head?

3. Select the synteny

http://plasmodb.org
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Scroll  down until you come to the 
transcriptome data for expression 
in the sexual stages the 17th or so.

Doing the same with the following gene (PBANKA_1449300), that has 
the annotation “CPW-WPC family protein, putative“, returns a 
similar pattern.

When are those genes mostly expressed? Could you formulate a hypothesis what kind of 
genes the knocked out gene might control?

What genes would you expected to be up regulated in the mutant?

Conversely, how much can you trust those results? Could the variation be down to noise, 
or natural variation?

What extra data would be useful to help us to be more confident about our conclusions? 
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Introduction

Differential Expression

Understanding the genome is not simply about understanding which genes are there. 
Understanding when each gene is used helps us to find out how organisms develop and 
which genes are used in response to particular external stimuli. The first layer in 
understanding how the genome is used is the transcriptome. This is also the most 
accessible because like the genome the transcriptome is made of nucleic acids and can 
be sequenced relatively easily. Arguably the proteome is of greater relevance to 
understanding cellular biology however it is chemically heterogeneous making it much 
more difficult to assay. 

Over the past decade or two microarray technology has been extensively applied to 
addressing the question of which genes are expressed when. Despite its success this 
technology is limited in that it requires prior knowledge of the gene sequences for an 
organism and has a limited dynamic range in detecting the level of expression, e.g. how 
many copies of a transcript are made. RNA sequencing technology using, for instance 
Illumina HiSeq machines, can sequence essentially all the genes which are transcribed 
and the results have a more linear relationship to the real number of transcripts 
generated.

The aim of differential expression analysis is to determine which genes are more or less 
expressed in different situations. We could ask, for instance, whether a bacterium uses its 
genome differently when exposed to stress, such as excess heat or a drug. Alternatively 
we could ask what genes make human livers different from human kidneys. 

In this module we will try to gain more understanding of the genes differentially 
expressed between the wild type and knock out of our experiment. We are going to use 
three biological replicates of the WT and three biological replicates of the mutant to get 
more statistical power. And we are going to use new tools, and just for Omar something 
to click, once the analysis is done.



Analysis of RNA-Seq

G. Using Kalliso and Sleuth to identify differentially 
expressed genes

Kallisto is a read mapper, but instead of mapping against the genome it is designed to 
map against the transcriptome, i.e. the spliced gene sequences inferred from the genome 
annotation. Rather than tell you where the reads map it’s aim is in quantifying the 
expression level of each transcript. It is very fast because it uses pseudo-alignment 
rather than true read alignment. 

Sleuth uses the output from Kallisto to determine differentially expressed genes. It is 
written in the R statistical programming language, as is almost all RNA-seq analysis 
software. Helpfully however it produces a web page that allows interactive graphical 
analysis of the data. However, I would recommend learning R for anyone doing a 
significant amount of RNA-seq analysis.  It is nowhere near as hard to get started with 
as full-blown programming languages such as Perl or Python!

Kallisto needs an index of the transcript sequences (Pb.CDS.fasta).

$ kallisto index -i Pb.transcript transcript_sequences

Quantify the expression levels of your transcripts for the MT1 sample. The read file are 
again WT1_1.fastq.gz WT1_2.fastq.gz.

$ kallisto quant -t 3 --rf-stranded -i index_name -o MT1 -b 
100 read_1 read_2
The results are contained in the file MT1/abundance.tsv. Kind of we are, the other 5 
samples are already mapping with the same command: the command looks like:
for x in WT2 WT3 KO1 KO2 KO3 ; do kallisto quant -t 3 --rf-stranded -i
Pb.transcript -o $x -b 100 $x\_1.fastq.gz $x\_2.fastq.gz; done
But again, this is already done!

We have provided a series of R commands which will get Sleuth running. These are in the 
file sleuth.R. Open the file and have a look. 

$ cat sleuth.R

It is not as hard as it seems, I copied most of this from the manual! To run this R script, 
you will have to open R:

$ R
And then copy and paste commands from the file sleuth.R
This should open a browser….
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H. Using Sleuth to quality check the data

Sleuth provides several tabs which we can use to determine whether the data is of good 
quality and whether we should trust the results we get.

In the web page which has been launched click on Summaries->processed data.

Even though we have used the same number of reads for each sample, there are large 
differences in the number of reads mapping for each one. Why might this be? Is it a 
problem?

Click on map->PCA.

The Principal Components Analysis plot shows the relationship between the samples in two 
dimensions (PC1 and PC2). In this case almost all the variation between the samples is 
captured by just Principal Component 1. The WT samples are well separated from the WT 
samples, meaning that the replicates are more similar to each other than they are to samples 
from the different condition. This is good. But it seems that one KO is a bit distant… hm...

In some cases we identify outliers, e.g. samples which do not agree with other replicates 
and these can be excluded. If we don’t have many replicates, it is hard to detect outliers and 
our power to detect differentially expressed genes is reduced.

BTW, we for sleuth we needed to generate two more files! hiseq_info.txt and 
Pb.CDS.fasta, have a look.. if you once need to generate them, drop me a line, 
thomasdan.Otto@glasgow.ac.uk!
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I. Interpreting the results

In the R script we printed out a file of results describing the differentially expressed 

genes in our dataset. This is called “kallisto.results”.

The file contains several columns, of which the most important are:

Column 1: target_id (gene id)

Column 2: pval (p value)

Column 3: qval (p value corrected for multiple hypothesis testing)

Column 4: b (fold change)

Column 12: description (some more useful description of the gene than its id) 

Go back to Linux. With a little of magic we can get the list of differentially expressed genes 

with only the columns of interest as above. The following command will get those genes which 

have an adjusted p value less than 0,01 and a positive fold change. These genes are more 

highly expressed in SBP samples.

$ cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 > 0’

These genes are more highly expressed in MT samples:

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 < 0’

How many genes are more highly expressed in each condition? ( use | wc –l command!)

Do you notice any particular genes that come up in the analysis?
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Now let’s compare this list to the one before. What are the differences? Is the list similar to 

your first list of differentially expressed genes? 

Do you understand each column? 

Which results would you trust more (this or the ratio in the Excel table)? 

If time permits lookup more genes up in plasmodb…

What other datasets would help in the interpretation of the results?

The list is a bit different as we are looking now at the complete genome. But if you would 

do a | grep _14, you would see that there are not tooooo many differences.

Anyhow, this does not necessarily help us to find the function of the gene we knocked out… 

let’s write out the differential expressed genes, with a log fold change of 2, and do a GO 

enrichment in PlasmoDB.

$ cut -f1,3,4,12 kallisto.results | awk '$2 < 0.01 && $3 > 0' 
| cut -f 1 > UpRegulated.txt

$ cut -f1,3,4,12 kallisto.results | awk '$2 < 0.01 && $3 < 0' 
| cut -f 1 > DownRegulated.txt

gene_id q-value fold expression    product
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Maybe some of you have already determined the function of the transcription factor. But this 
would have been done manually. A more automated method would be to do a GO enrichment. 
Basically, statistics are used to test if a function (or GO term) is enriched in the down or up 
regulated genes compared to all of the GO terms associated to the genes that are expressed. 

Gene Ontology or GO, is a major bioinformatics initiative to unify the representation of gene 
and gene product attributes across all species, see 
http://en.wikipedia.org/wiki/Gene_ontology. GO terms are represented in directed acyclic 
graph, so functions can be further specified in a sub node. The GO enrichment test we will 
use takes the structure of this hierarchy into account.

But the association of GO terms to genes depend on the known functions and level of 
curation. For example, in P. berghei, less than half of the genes have GO terms associated!

In this exercise we will do a GO enrichment of the differentially expressed genes of the 
complete gene set (not just chromosome 14).

Can you repeat the analysis 

This method obviously depends how many genes have GO terms associated. 

GO enrichment

Change the directory and have a look at the files:

$ cd ~/Module_4_RNA-Seq/GO
$ ls

If you have finished the exercise from above, you have generated the Up and 
DownRegulated.txt file. Then copy them into this directory with

$ cp ../*Regulated.txt .

In case you haven’t done the step, the two files are in the directory.

There are methods like David to do GO enrichment for human. For parasites we would 
encourage to also visit EupathDB. We can show that if you want.
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Can you repeat the analysis with with the other GO domains (CC and MF)?

Would you be able to repeat the analysis with up regulated genes in the mutant? Which 
processes are enriched. Are the results expected?

Would it make sense to change the criteria to generate the list of up and down regulated 
genes? If so, how and why?

Though the enrichment test is done in R, using the bioconductor class topGO, we are going 
to call it directly from the command line. Maybe have a quick look at the code to see how 
the enrichment is done.

$ cat doGO.R

So next we are going to call the program, looking for the biological process (BP), see 
http://en.wikipedia.org/wiki/Gene_ontology. 

$ R CMD BATCH "--args UpRegulated.txt Pb.GOterms.txt BP ” 
doGO.R

This command tells R to run from the command line the program doGO.R. Three 
parameters are given: 
1. Genes of interest - which you generated
2. GO database  
3. The domain search: BP (biological process, e.g. cell cycle), MF (molecular function, e.g. 

kinase) or CC (cellular component, e.g. nucleus, cytoplasm)

The result is in file Result.txt

$ cat Result.txt

Google the first hit, “microtubule-based movement” including “malaria” as further search 
term. What paper pops out first? Does this help to understand which genes the knocked out 
transcription factor might regulate?

Do not panic…
… if you don’t understand everything! This is a very advanced methodology. It 
involved bioinformatics, statistics and deep knowledge into the parasite. At the 
same time, the results depend on many parameters like, experiment setup, quality 
of your RNA-Seq data, parameter used in the different steps and the quality of the 
GO database. 

Important: In the end you got several enriched functions as result of your 
experiment that characterize the function of the knocked out gene! Well done!



Analysis of RNA-Seq

Key aspects of differential expression analysis

Replicates and power

In order to accurately ascertain which genes are differentially expressed and by how 
much it is necessary to use replicated data. As with all biological experiments doing 
it once is simply not enough. There is no simple way to decide how many replicates 
to do, it is usually a compromise of statistical power and cost. By determining how 
much variability there is in the sample preparation and sequencing reactions we can 
better assess how highly genes are really expressed and more accurately determine 
any differences. The key to this is performing biological rather than technical 
replicates. This means, for instance, growing up three batches of parasites, treating 
them all identically, extracting RNA from each and sequencing the three samples 
separately. Technical replicates, whereby the same sample is sequenced three times 
do not account for the variability that really exists in biological systems or the 
experimental error between batches of parasites and RNA extractions.

n.b. more replicates will help improve power for genes that are already detected at 
high levels, while deeper sequencing will improve power to detect differential 
expression for genes which are expressed at low levels.

P-values vs. q-values
When asking whether a gene is differentially expressed we use statistical tests to 
assign a p-value. If a gene has a p-value of 0.05 we say that there is only a 5% 
chance that it is not really differentially expressed. However, if we are asking this 
question for every gene in the genome (~5500 genes for Plasmodium), then we 
would expect to see p-values less than 0.05 for many genes even though they are 
not really differentially expressed. Due to this statistical problem we must correct 
the p-values so that we are not tricked into accepting a large number of erroneous 
results. Q-values are p-values which have been corrected for what is known as 
multiple hypothesis testing. Therefore it is a q-value of less than 0.05 that we 
should be looking for when asking whether a gene is differentially expressed.
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Alternative software
If you have a good quality genome and genome annotation such as for model 
organisms e.g. human, mouse, Plasmodium, I would recommend mapping to the 
transcriptome for determining transcript abundance. This is even more relevant if 
you have variant transcripts per gene as you need a tool which will do its best to 
determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016; 
PMID: 27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280) 
which will do this.

Alternatively you can map to the genome and then call abundance of genes, 
essentially ignoring variant transcripts. This is more appropriate where you are less 
confident about the genome annotation and/or you don’t have variant transcripts 
because your organism rarely makes them or they are simply not annotated. 
Tophat2 (Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al. 2016; PMID: 
27560171), STAR (Dobin et al., 2013; PMID: 23104886) and GSNAP (Wu & Nacu, 
2010; PMID: 20147302) are all splice-aware RNA-seq read mappers appropriate 
for this task. You then need to use a tool which counts the reads overlapping each 
gene model. HTSeq (Anders et al., 2015; PMID: 25260700) is a popular tool for 
this purpose. Cufflinks (Trapnell et al. 2012; PMID: 22383036) will count reads and 
determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from 
tables of RNA-seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281), 
EdgeR (Robinson et al., 2010; PMID: 19910308) and BaySeq (Hardcastle & Kelly, 
2010; PMID: 20698981) are good examples.

What do I do with a gene list?

Differential expression analysis results is a list of genes which show differences 
between two conditions. It can be daunting trying to determine what the results 
mean. On one hand you may find that that there are no real differences in your 
experiment. Is this due to biological reality or noisy data? On the other hand you 
may find several thousands of genes are differentially expressed. What can you say 
about that?

Other than looking for genes you expect to be different or unchanged, one of the 
first things to do is look at Gene Ontology (GO) term enrichment. There are many 
different algorithms for this, but you could annotate your genes with functional 
terms from GO using for instance Blast2GO (Conesa et al., 2005; PMID: 
16081474) and then use TopGO (Alexa et al., 2005; PMID: 16606683) to determine 
whether any particular sorts of genes occur more than expected in your 
differentially expressed genes.
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