Analysis of RNA-Seq

RNA-Seq &
Differential Expression

Introduction

Understanding the genome is not simply about understanding which genes are there.
Understanding when each gene is used helps us to find out how organisms develop and
which genes are used in response to particular external stimuli. The first layer in
understanding how the genome is used is the transcriptome. This is also the most
accessible because like the genome the transcriptome is made of nucleic acids and can
(indirectly) be sequenced using the same technology. Arguably the proteome is of greater
relevance to understanding cellular biology however it is chemically heterogeneous
making it much more difficult to assay.

Over the past decade or two microarray technology has been extensively applied to
addressing the question of which genes are expressed when. Despite its success this
technology is limited in that it requires prior knowledge of the gene sequences for an
organism and has a limited dynamic range in detecting the level of expression, e.g. how
many copies of a transcript are made. RNA sequencing technology, using for instance
[Nlumina HiSeq machines, can sequence essentially all the genes which are transcribed
and the results have a more linear relationship to the real number of transcripts generated
in the cell.

The aim of differential expression analysis is to determine which genes are more or less
expressed in different situations. We could ask, for instance, whether a pathogen uses its
genome differently when exposed to stress, such as excessive heat or a drug. What
happens if a gene gets silences (this exercise), and how does that change the
transcription profile? Alternatively we could ask what genes make human livers different
from human kidneys.

In close future we are going to be able to sequence routinely sequence single cells from
organisms, understanding the heterogeneity of complex beings... but let’s focus on this
exercise and malaria.
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Here how RNA-Seq is working in a more visual way ... imagine this transcript is present in

the sample
5 UTR 3 UTR

Reads belonging to the transcript are produced by the sequencing process.

When the reads come out as raw data, there is no information about where they belong on the
reference genome. What is more, all reads from several different transcripts come out together.
An alignment algorithm finds where they belong in the reference genome based on similarity
matches.
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ﬁ first RNA-Seq study in Plasmodium parasites focused on P. falciparum (Otto et. al. 2m
The aim was to show the viability of the RNA-Seq protocol in comparison to microarrays and

also to improve the genome annotation and find alternative splicing. Recently a group used RNA-
seq to identify differentially expressed genes, showing that parasites from vector transmitted
infections are less virulence than serially blood passaged in the laboratory (Spence et al. 2013). In

PlasmoDB there are more than 20 transcriptome for Plasmodium, and many more for the other
parasites. Let’s start to have a look at one:

Exercise

In this exercise you will need to determine the function of a gene that was knocked out. Your task
is to find out the function of this gene, off you go!

- /
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A. Mapping with HiSat2

/We have two conditions, wildtype (WT) and knock out (KO). First we are going to focus \
on the WT and map the reads against the reference genome of Plasmodium berghei. The
tool we are using, HiSat2 is rather fast, but we did decrease the amount of reads to 30% for
speed and space issues, compared to the original data.

In the directory of the module (Module 4 RNA-Seql) you can find the Plasmodium
chromosome genome reference sequence (PbANKA v3.fasta) as well as the two files

QfRNA-seq reads of the WT: WT1 1.fastg.gz and WT1l 2.fastqg.gz. /

First, change to the directory ~/Module 4 RNA-Seq and check if you are in the correct directory
(pwd).

For the mapping, first an index of the reference (PbANKA v3.fasta) must be constructed with
hisat2-build. On the command syntax is: (Remember the names in italic are variables that you
have to set!)

$ hisat2-build reference file index name
As index name you can use for example PbANKA_v3.

This will generate the index need for the mapping. Most of the output you can ignore. Hisat2 is an
improved version of tophat which is several times faster. To start the command you should type:

$ hisat2 -p 2 --max-intronlen 10000 -x index name -1 reads 1 -2
reads 2 —S WT1l.sam

The read file are called WT1 _1.fastg.gz WT1l 2.fastqg.gz and the index name you gave,
see above.

The results of the mapping is in WT1.sam. The —p 2 option runs the mapping on four processors -
why not using them if they are there?

Now you have to transform the WT1.sam file into a bam file and index it. Do you remember the
command from yesterday? It was something with samtools, sort and index....

Check that your bam files exists by getting the mapping stats:
$ samtools flagstat WT1l.bam

If that worked, we need to clean up, as those files are pretty huge. Now that we have the bam file,

we don’t need the sam file anymore. Let’s have a look at the files
$ 1s -1rsS

As in the mapping exercise, is the sam file non empty? You can see the large file called WT1.sam.
If the bam file was created correclty, you can delete it with
S rm WT1l.sam
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B. Viewing the mapped reads in Artemis

We will now examine the read mapping in Artemis using the BAM view feature.

Be sure to be in the same directory as before. Open Artemis and load

PbANKA 14 v3.embl. This file contains the sequence of chromosome 14 and the
annotation. Here is also the gene that was knocked out.

$ art PbANKA 14 v3.embl & ### to open Artemis

First go to the position 2308000 (Goto -> navigator).

NN TN I T T TR ||||I|||||l-ﬂ =T R LIRTE RN R TR Y UL
L A WO R T A lf I||I|| Ilﬂl 1T —}IIIIIIIII (R IRTHR TR I N LT
| T T AR R II||||I|| I- T T TR T |I|ILITPll BIN NI |

| PBANKA_ 14

|2304500 |2305600 |2306400 |2307200 |2305000 |2305500 |z300680 |2310400 |2311200 |23128

0L 0 T 1 1 R A

I TR L VAT A 1 T Y 11
PBANKA_ 1468686

(O L A 1 1 1 1 11

) ) [ © ~ © BAM / VCF View :: Select Files
1. Now click on File BAN / VCF file: p—
( Select... )
> “Reads BAM/ P
VCF . 2 ( nddjmore
/‘7 [\

el

Show File Manager ... 2. Select here the bam file you just generated
Read An Enfry ... (WT1.bam?) and then press ok.
Read Entry |nto =

Read BAM ) VCF ... !

Entries] Select View Goto |
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Congratulations, you have opened a Malaria chromosome with RNA-Seq mapping on it!
The horizontal blue/green lines are sequencing reads, mapped against the reference. Let’s

have a look how the reads are “mapped” against the reference.
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Each sequence represents a read. It is very similar to

the genomic sequence at this

was mapped at this position. The abundance of reads
represents the amount of mRNA of this gene.

regions, and therefore

This is the so-called one-
base pair resolution of
RNA-Seq!

~

fThose reads are mapped over a
splice site. The bar shows the
intronic regions, which should
be skipped in the reads. Can you
see where the other parts of the

Right click in “BAM
view,, select Graph ->
Coverage. Then zoom

out again

reads are mapping?
\_ /

Add BAM ...
BAM files
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C. Interpreting the mapping

Zoom out until you have the same view as below:

00 Artemis Entry Edit: PbANKA_14_v3.embl

Entry: PbANKA_14_v3.embl

TNuthinq selected

You can move the reads up
and down, on the right
scroll bar.

You can increase the size
of the bam view, by
dragging down with the
mouse.
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34800 |2385600 |2306400 |2387200 |2208000 |2308500 |2389600 |2310400 |231120 |2312000 |z
Configure Line{s)...
Options... <= (

To better see the splice sites, do right click.
Select “Options...”:

Set the window size to 1 (before unselect

8.0.0 \| Coverage Options “Automatic. . .”)

E Zoon level hefore switching
To coverage view (in bases): 26000 ]
Window size:|l
[]Automatically set window size

[] Sshow Combined Plot

Please discuss following aspects with your neighbour:

coverage very even over longer genes?

The coverage represents the amount of reads mapped over each position. Why are reads
mapped where no exons are? Can you distinguish transcription starts and stops of genes?

Notice that different genes have different depths of coverage. What does this means?

Scroll through the genome and look at half a dozen genes, also some longer ones.
Why do some genes have less coverage? Have some genes no reads mapped to them? Is the
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Actually, these data are strand specific! This means that from the reads you can determine
the orientation of the transcript. This is useful to find RNA reverse tanscribed of genes.
That might help also answer some questions, like were genes start, when they are head to

head.
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D. Uniqueness and GC content

Go to the position 16000 (Goto -> navigator).

@ ArtemisMain File Entries Select View Goto Edit Create Run Graph «isplay S EF ® % O =
e0e@ Artemis Entry Edit: PbANKA_14_v3.embl /1 . Enable the GC \
Entry: PbANKA_14_v3.embl
rOne selected base on forward strand: 15897 [ COl’ltel’lt, Gl'aph -> GC
GC Content (%) Window size: 108
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3. What are those
peaks? Is there a
correlation to the GC
content?

|18490 |19280

4. You can filter reads by

mapping quality and if 5. Right click,
they are mapped as proper than Filter
mate pairs. Reads...
6 Set the mapping
quality to 10 and show
Add BAM ... proper pairs. What
BAM files B happens?
Analyse > pp '
Views > What does that mean
Colour By > for the expression
show > values of those genes?
Graph k 8 /
v Asynchronous

BamView Height

000 Filter Reads
By Mappying Quality (mapq) cut-off:

( ser )

By SAM FLAG column:
Select below to show or hide only the reads with
the flag set.

5 Read Paired

Proper Pair

Read Unmapped

Mate Unmapped

Read on Negative Strand

Mate on Negative Strand

First of Pair

Second of Pair

Not Primary Alignment

Read Fails Vendor Quality Check
Duplicate Read

' B
( Close
Se——

Use Log Scale
Filter Reads ...
List Reads ...

Clone window

Variation in coverage can have many reasons, one is GC content. Also
important, reads can be placed more than once, when they are mapped
repetitively. More conservative mapping is to just look at proper pairs,
and ignore reads with a mapping quality score below 5.
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E. Including the mutant data set

Next we want to include the mutant (knock out) data set.

The reads of the KO parasite are in directory bam.

select add BAM

l

[ ® O am / VCF View :: Select Files

B
WW il
>/ select... )

| —

H
o
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M
s
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I
¥
|
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- (Right click here,
\

T e R I R R T T R e aad more
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IR R IR R R R R LA LR IR L

|
|13608 |14408 |15200 |16088 |16898 |17688 |18408 A
R R Rk e T
b w0 v e w5 o Include the file KO1.bam from the

| bams directory.

In the BAM view of the reads, it might be difficult to distinguish the differences between

the two different BAM files (data sets). But in the coverage plot, one can see the
differences in coverage by the color. You can color the read by the coverage plot (right

click BAMview -> color by -> Coverage plot colors.

First have a look at the knock out gene (PBANKA KO). Is it really knocked out?
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It seems quite convincing that this gene is not expressed at all in the mutant (blue
coverage plot). So the knock out seem to have worked. Interestingly, it is just a little bit

expression in the WT... can that be an important gene after all?

1418460 _ 1410260 1420006 _ _ 142680

>>
o
11— | 11111
PEANKE, KO
L T W X RA A
N0 OO0 OO A AN 0010 000 O 0 10 NN ARV DO 0O O O OO0 AU 10 000

Skim through the genome and compare the expression (coverage plots) between the two
conditions. Again discuss the following questions with your neighbour or a tutor:

Which genes have extreme different coverage? Find a few and write the gene id numbers

down.
Is it enough to look at raw coverage, or would you need some kind of normalization?
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F. Normalization - RPKM

You have seen that the coverage varies between the two samples and it is difficult to
compare. One possibility of normalizing the data is to generate the RPKM for each gene.
RPKM stands for reads per kilobase per million mapped reads. It is a measure of how
many reads map to a gene, normalized by the gene length and by the amount of mapped

reads in the run.

N
1. Select all genes by:

Click on Select -> All
CDS Features

2. Right click on the BAM
view -> Analysis ->
RPKM values of selected
features. ..

J

[-NeNs] RPKM Options

@ Include all overlapping reads

3. Unselect “Intron

@ Introns included =
<

Name Options >>

0K Cancel

Use reads mapped to all reference sequences

© O O Calculating
Total number of mapped reads

Lincluded”

{ Wait until the box sa}h

it is done.

ii—— 0%

g The upcoming window will have RPKM values for each gen,\
for both the WT and the mutant. This will be split by strand of the

DNA and a total score for both strands of DNA.

Save the file as Pb_ RPKM.csv. This one you could load into
LibreOftice (Excel), but here we are going to use a Linux “one-

/

@er”.

Maybe take a break to do
some stretching for your
back... at home this will
take longer. It is faster to

use local copies of the

QA;M files!

RPKM

FDANNA_L50J000 1z.o05 CIELE] Zu.350 UL 000 UL 000
PBANKA_1408700 105.530 17.588 123.118 218.040 10.383
PBANKA_1461700 597.727 0.000 597.727 78.412 0.000
PBANKA_1427400 444.026 0.000 444,026 0.000 13.442
PBANKA_1410000 520.964 3.029 523.993 153.770 0.000
PBANKA_1446100 1384.594 25.201 1409.794 1766.495 2.550
PBANKA_KO 10.354 120.431 0.643 1.287 1.930
PBANKA_1404300 186.484 35.281 221.765 47.605 7.934
PBANKA_1459600 53.031 0.000 53.031 19.922 2.846
PBANKA_1423500 3483.051 23.614 3506.665 4293.509 6.970
PBANKA_1442200 814.739 22.071 836.810 224.440 0.841
PBANKA_1466241 0.000 0.000 0.000 0.000 0.000
PBANKA_1400900 318.788 38.877 357.664 18.360 27.540
PBANKA_1455700 406.670 13.785 420.455 48.828 8.138
PBANKA_1404000 72.817 11.854 84.671 15.995 0.000
PBANKA_1451800 1052.388 16.380 1068.768 1708.572 6.769
PBANKA_1417500 513.984 9.809 523.793 178.346 0.000
PBANKA_1436200 887.618 24.940 912.558 557.962 15.100
PBANKA_1400100 43.027 3.012 46.938 4.618 0.000
PBANKA_1413600 73.164 17.420 90.584 32.907 12.340
PBANKA_1449700 6227.911 18.480 6246.391 9425.841 65.457
PBANKA_1432300 13.711 47.990 61.701 8.094 0.000
PBANKA_1451000 148.169 6.735 154.904 47.710 0.000
PBANKA_1445800 2359.625 71.504 2431.129 6690.401 28.140
PBANKA_1464500 1823.603 47.010 1870.613 6066.005 55.503
PBANKA_1441900 245.769 19.590 265.360 82.004 0.000
PBANKA_1407600 9338.147 46.652 9384.800 9657.336 36.720
PBANKA_1460600 90.701 66.692 157.393 22.047 97.638
PBANKA_1426300 283.619 9.076 292.695 85.723 6.697
PBANKA_1445000 177.241 4.923 182.164 11.626 0.000
PBANKA_1439800 1251.966 81.146 1333.112 1272.846 41.060
PBANKA_1403700 354.423 15.410 369.832 9.097 0.000

57.587 000 0.000

PBANKA_1458500

106.948

Close Save

164.536 0.
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Now we would like to know which genes have the biggest difference in terms of expression
between them. One way is to generate the ratio of the RPKM of WT and KO and look at the
most extreme values. This can be done very easily on the command line:

$ awk ’'$4>100{print $1,$4,$7,($4/($7+0.001))}’ Pb RPKM.csv |
sort -rnk 4 | head -n 20

The awk commands can access columns in a file (like Excel) and do mathematical operations
in this case the ratio. We just want genes that are expressed ($4>100).The output is piped into
the sort program, that sort numeric reverse and column 4 (k). And we are just interested in
the top 20 lines (head -n 20).

What happened if you try tail instead of head?

PBANKA_1419500 352.344 0.000 352344
PBANKA_1431500 315.246 0.000 315246
PBANKA_1458500 164.536 0.000 164536
PBANKA_1453900 157.680 ©.000 157680
gg::ﬁ-iﬁzm Eggi’; g-m Eg;i’; If your values are different - maybe you
PBANKA_1446400 112. ‘ : filtered the reads differently, and that is
A IECOO0 T 1UD | 535% U000 1vDoor

PBANKA_1436600 1195.609 2.935 407.224 no problem at all!

L Wy e s .
PBANKA_1430300 1541.091 8.051 191.392 Open at least the two marked genes in
TLrnA_ 1401500 Z466.177 Zb.15¢ 9%.30ce PlasmoDB (http://plasmodb.org) and
PBANKA_1449300 749.267 8.242 90.8974 enter the first (yellow) gene id.

PEANNA_LTiToww Suc.ore arecws wr . %

PBANKA_1419300 739.357 11.337 £5.21@5
PBANKA_KO 120.431 1.930 62.3672

Version 11.0

' PlasmoDB > S
I 4 Gane 03 roania_143550 | ene IDs in
;o N— ~sgister | C g
Shortcuts here.
Synteny

PBANKA_1436600 inner membrane complex protein 1h

S e

into the official annotation if appropriate.

Name: IMC1h T This genome is actively curated at GeneDB. |

2. Read the gene page. Does it tell
you about the function of the down 3. Select the synteny

regulated gene?

View in genome browser

POANKA_14_v3
1370k 1380k 1380k
Annotated Transcripts ( UTRs in gray uhen available)
PBANKA_1436200 .1 (SET10) PBANKA_1436400.1 PBANKA_1436600.1CINC1h)  PBANKA_1436800.1 PBANKA_1437000.1
— — — —
PBANKA_1436300.1  PBANKA_1436500.1 PBANKA_1436700 .1 PBANKA_1436900.1 PBANKA_1437:
oo T i—T — — Y
tenic Sequences and Genes (Shaded by Orthology)
pberANKA contig
1370k 1380k 1390k

pherANKA genes
F— oo re, — — — — S— —
L]

pyoeyoeliil7x contig

1494k 1504k 1514k
pyoeyoeliil7x genes
[ ===H | ¢ Track detalls - — —
pchachabaudi contig
1370k
pehachabaudi genes | Gene: PF3D7_1221400 - 4. The genome of P
pvinpetteriCR contiy Species: Plasmodium falciparum 3D7 .
360k 1390k
§ puinpetteriCR genes Gene Type: Protein Coding L. falClparum 3D7 has a far
pgalBA contig Description: inner membrane complex protein 1h, putative i richer annotatlon, SO
pgalsA genes Location: Pf3D7_12_v3: 857097 - 858671
o 2 | — let’s look at the
prelsGsi-like contiy Basket: Log in to save genes.
. 1341k
prelsesi-like genes. Links: eoWEET Gene Page Orthologue.
pFal3D7 contig OrthoMCL 0OG5_144120

pfal3D? genes
—

puivsall contig


http://plasmodb.org
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Scroll down until you come to the
transcriptome data for expression

Transcriptomes of 7 sexual and asexual life stages

—
>

in the sexual stages the 17" or so. J

fpkm - PF3D7_1221400

FPKM

0 A &, . "\
S A A RN
< Q o )
N N . Y] "3}
o) A e & &
& v - e &
&

Doing the same with the following gene (PBANKA_1449300), that has
the annotation “CPW-WPC family protein, putative®, returns a

similar pattern.

lllumina-based sequencing
of Pfalciparum 3D7 mRNA
from two gametocyte stages
(Il and V), ookinete, and four
time points of erythrocytic
stages representing ring,
early trophozoite, late
trophozoite, and schizont.

Transcriptomes of 7 sexual and asexual life stages Hide
@ Uniguely Mapped O Non-Uniquely Mapped

RPKM - PF3D7_1234700

[Data Sets]

Data Table Show

Descripti
mumina-baseu sequencing of Pfalctparum 307 mRNA from two gametocyte stages (1 and V), cokinete, and four time points of
tages ring, e:

Using synchronized Plasmodium Ie/cwarum 37 parasites cutured for one full cycle, samples were havested at 8, 19, 30, and 42 h
post infectios ing, e: lat and schizont stages, respectively. Gametocytes were
broduced from asexuel CUTres havested ot cay 8 ls(age Il gametocytes) and day 15 (stage V gametocytes). Ookinete were
harvested from 30 mosquito midguts 24 h after a P falciparum infected blood meal.

V, and ookinete, were

braries from ring, early and late , schizont, I,
ds.

88

L1
Ring
Early Trophozoite
Late Trophozoite -
Schizont
Gametocyte Il |

Gametocyte V —:I
Ookinete —

Sev
e vy T et

x-axis
Pfalciparum seven life cycle stages cycle

-axis
Tianscript levels of reads per kilobase of exon mode! per millon mapped reads (RPKM). Stacked bars indicate unique and
Non-Unique are plotted to indicate the maximum expression potential of this gene.

Choose Gene to Display Graphs for
PF3D7_1234700 (&

When are those genes mostly expressed? Could you formulate a hypothesis what kind of
genes the knocked out gene might control?

What genes would you expected to be up regulated in the mutant?

or natural variation?

Conversely, how much can you trust those results? Could the variation be down to noise,

What extra data would be useful to help us to be more confident about our conclusions?
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Differential Expression

Introduction

Understanding the genome is not simply about understanding which genes are there.
Understanding when each gene is used helps us to find out how organisms develop and
which genes are used in response to particular external stimuli. The first layer in
understanding how the genome is used is the transcriptome. This is also the most
accessible because like the genome the transcriptome is made of nucleic acids and can
be sequenced relatively easily. Arguably the proteome is of greater relevance to
understanding cellular biology however it is chemically heterogeneous making it much
more difficult to assay.

Over the past decade or two microarray technology has been extensively applied to
addressing the question of which genes are expressed when. Despite its success this
technology is limited in that it requires prior knowledge of the gene sequences for an
organism and has a limited dynamic range in detecting the level of expression, e.g. how
many copies of a transcript are made. RNA sequencing technology using, for instance
[Nlumina HiSeq machines, can sequence essentially all the genes which are transcribed
and the results have a more linear relationship to the real number of transcripts
generated.

The aim of differential expression analysis is to determine which genes are more or less
expressed in different situations. We could ask, for instance, whether a bacterium uses its
genome differently when exposed to stress, such as excess heat or a drug. Alternatively
we could ask what genes make human livers different from human kidneys.

In this module we will try to gain more understanding of the genes differentially
expressed between the wild type and knock out of our experiment. We are going to use
three biological replicates of the WT and three biological replicates of the mutant to get
more statistical power. And we are going to use new tools, and just for Omar something
to click, once the analysis is done.
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G. Using Kalliso and Sleuth to identify differentially
expressed genes

~

Kallisto is a read mapper, but instead of mapping against the genome it is designed to
map against the transcriptome, i.e. the spliced gene sequences inferred from the genome
annotation. Rather than tell you where the reads map it’s aim is in quantifying the
expression level of each transcript. It is very fast because it uses pseudo-alignment
rather than true read alignment.

- J

Kallisto needs an index of the transcript sequences (Pb.CDS. fasta).
$ kallisto index -i Pb.transcript transcript sequences

Quantify the expression levels of your transcripts for the MT1 sample. The read file are
again WT1_1.fastq.gz WT1_2.fastq.gz.

$ kallisto quant -t 3 --rf-stranded -i index name -o MT1 -b
100 read 1 read 2
The results are contained in the file MT 1/abundance.tsv. Kind of we are, the other 5

samples are already mapping with the same command: the command looks like:
for x in WT2 WT3 KOl KO2 KO3 ; do kallisto quant -t 3 --rf-stranded -i
Pb.transcript -o $x -b 100 $x\_1l.fastqg.gz $x\_ 2.fastqg.gz; done

But again, this is already done!

~

Sleuth uses the output from Kallisto to determine differentially expressed genes. It is
written in the R statistical programming language, as is almost all RNA-seq analysis
software. Helpfully however it produces a web page that allows interactive graphical
analysis of the data. However, I would recommend learning R for anyone doing a
significant amount of RNA-seq analysis. It is nowhere near as hard to get started with
as full-blown programming languages such as Perl or Python!

-

/

We have provided a series of R commands which will get Sleuth running. These are in the
file sleuth.R. Open the file and have a look.

S cat sleuth.R

It is not as hard as it seems, I copied most of this from the manual! To run this R script,
you will have to open R:

$R
And then copy and paste commands from the file sleuth.R
This should open a browser ...
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H. Using Sleuth to quality check the data

-

-

Sleuth provides several tabs which we can use to determine whether the data is of good
quality and whether we should trust the results we get.

In the web page which has been launched click on Summaries->processed data.

Even though we have used the same number of reads for each sample, there are large

differences in the number of reads mapping for each one. Why might this be? Is it a
problem?

normalized

inow 25 ~|entries

target_id
PBANKA KO
PBANKA_KO
PBANKA_KO
PBANKA_KO
PBANKA_KO

PBANKA_KO

est_counts

1.806425

6.328909

84.960225

140.638240

411.978521

154.745707

covariates

tpm

0.1530856

0.5550942

7.2025135

11.9768883

35.4550118

13.0074624

eff_len

6749.976

6783.380

6742.123

6740.047

6747.557

6726.789

Search: | Poanka KO

7020

7020

7020

7020

7020

7020

@ filter © text labels

condition

& Download Plot

Click on map->PCA.

The Principal Components Analysis plot shows the relationship between the samples in two
dimensions (PC1 and PC2). In this case almost all the variation between the samples is
captured by just Principal Component 1. The WT samples are well separated from the WT
samples, meaning that the replicates are more similar to each other than they are to samples
from the different condition. This is good. But it seems that one KO is a bit distant... hm...

In some cases we identify outliers, e.g. samples which do not agree with other replicates
and these can be excluded. If we don’t have many replicates, it is hard to detect outliers and
our power to detect differentially expressed genes is reduced.

BTW, we for sleuth we needed to generate two more files! hiseq info.txt and
Pb.CDS. fasta, have a look.. if you once need to generate them, drop me a line,
thomasdan.Otto@glasgow.ac.uk!
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l. Interpreting the results

m the R script we printed out a file of results describing the differentially expressed \
genes in our dataset. This is called “kallisto.results”.

The file contains several columns, of which the most important are:

Column 1: target id (gene id)
Column 2: pval (p value)
Column 3: gqval (p value corrected for multiple hypothesis testing)
Column 4: b (fold change)
\Column 12: description (some more useful description of the gene than its id) /

Go back to Linux. With a little of magic we can get the list of differentially expressed genes
with only the columns of interest as above. The following command will get those genes which
have an adjusted p value less than 0,01 and a positive fold change. These genes are more
highly expressed in SBP samples.

$ cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 > 0
These genes are more highly expressed in MT samples:

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 < 0’

How many genes are more highly expressed in each condition? (use | wc —1 command!)

Do you notice any particular genes that come up in the analysis?
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Now let’s compare this list to the one before. What are the differences? Is the list similar to
your first list of differentially expressed genes?

Do you understand each column?

Which results would you trust more (this or the ratio in the Excel table)?

If time permits lookup more genes up in plasmodb...

What other datasets would help in the interpretation of the results?

gene id q-value

fold expression product

PBANKA_1431400
PBANKA_1458800
PBANKA_1419300
PBANKA_1421500
PBANKA_1445700
PBANKA_1421400
PBANKA_1455800
PBANKA_1449000
PBANKA_1405000
PBANKA_1461300
PBANKA_1421000
PBANKA_1463300
PBANKA_1448000
PBANKA_1432400
PBANKA_1460700
PBANKA_1463700
PBANKA_1430900
PBANKA_1466181
PBANKA_1437700
PBANKA_1414500
PBANKA_1420700
PBANKA_1431500

I 1436604

00 0 9009000 00UV UTNKEKMNN KWW

.28573573826137e-15
.88973337957171e-12
.17796604134042e-10
.94515679668602e-09
. 72292404298525e-07
.15835281629491e-07
.00880355908585e-06
.4373055659006e-06
.39265260604041e-05
.20725821001193e-05
.32004223642822e-05
.98153928630341e-05
.0374884324577e-05
.49922638605398e-05
.000160661046661276
.000197119395073462
.DDB225344469051259
.DDB2B7734943841492
.00B423587811520067
.00O507995668623349
.000507995668623349
.000544939833660155
.00100991573190885

.90541334960253
.41338602186776
.63543283541383

.15214104518609
.97989601893411
.03202423522353
.29140785393363

2
2
3
2
2
3
1
3
2
3
2.20121966902428
2.
1
2
3
1
1
3
1
3
1
3
3

17624218138509

.44426682481122
.94787483175709

.66910330280852
.30635422585721
.36472542625359
.25811367768951
.08778913002022
.49075353351279
.68436798976629
.69354470377221

conserved Plasmodium protein,

kinesin, putative

conserved Plasmodium protein,
.8444049121292 conserved Plasmodium protein, unknown
conserved Plasmodium protein,
.7918779791166 C-Myc-binding protein, putative
GASB-1ike protein, putative
.4288280805515 aspartyl protease, putative
MORN repeat protein, putative
conserved Plasmodium protein,

calmodulin, putative

conserved Plasmodium protein, unknown function
pentatricopeptide repeat domain-containing protein, putative
perforin-like protein 2

4674617405814 dipeptidyl aminopeptidase 2
DNA repair protein rhpl6, putative

conserved Plasmodium protein, unknown function

BIR protein, pseudogene // PIR protein, pseudogene
conserved Plasmodium protein, unknown function
protein kinase, putative

MAATS1 domain-containing protein, putative
conserved Plasmodium protein, unknown function
inner membrane complex protein 1h

unknown function
unknown function

function
unknown function

unknown function

The list is a bit different as we are looking now at the complete genome. But if you would
doa | grep _14,youwould see that there are not tooooo many differences.

Anyhow, this does not necessarily help us to find the function of the gene we knocked out...
let’s write out the differential expressed genes, with a log fold change of 2, and do a GO

enrichment in PlasmoDB.

$ cut -£1,3,4,12 kallisto.results | awk '$2 < 0.01 && $3 > 0
| cut -f 1 > UpRegulated.txt

$ cut -£1,3,4,12 kallisto.results | awk '$2 < 0.01 && $3 < 0
| cut -f 1 > DownRegulated.txt
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GO enrichment

Maybe some of you have already determined the function of the transcription factor. But this
would have been done manually. A more automated method would be to do a GO enrichment.
Basically, statistics are used to test if a function (or GO term) is enriched in the down or up
regulated genes compared to all of the GO terms associated to the genes that are expressed.

Gene Ontology or GO, is a major bioinformatics initiative to unify the representation of gene
and gene product attributes across all species, see
http://en.wikipedia.org/wiki/Gene ontology. GO terms are represented in directed acyclic
graph, so functions can be further specified in a sub node. The GO enrichment test we will
use takes the structure of this hierarchy into account.

But the association of GO terms to genes depend on the known functions and level of
curation. For example, in P. berghei, less than half of the genes have GO terms associated!

In this exercise we will do a GO enrichment of the differentially expressed genes of the
complete gene set (not just chromosome 14).

Change the directory and have a look at the files:

$ cd ~/Module 4 RNA-Seq/GO
$ 1s

If you have finished the exercise from above, you have generated the Up and
DownRegulated.txt file. Then copy them into this directory with

$ cp ../*Regulated.txt .
In case you haven’t done the step, the two files are in the directory.

There are methods like David to do GO enrichment for human. For parasites we would
encourage to also visit EupathDB. We can show that if you want.

Release 38

7AN® 5 Jul 2018
& PlasmoDB

Gene Results || Genome View | New Anaiysis._ )

© o>

Analyze your Gene results with a tool below.

GO

Gene Ontology Enrichment
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Though the enrichment test is done in R, using the bioconductor class topGO, we are going
to call it directly from the command line. Maybe have a quick look at the code to see how
the enrichment is done.

S cat doGO.R

So next we are going to call the program, looking for the biological process (BP), see
http://en.wikipedia.org/wiki/Gene ontology.

$ R CMD BATCH "--args UpRegulated.txt Pb.GOterms.txt BP ”
doGO.R

This command tells R to run from the command line the program doGO . R. Three

parameters are given:

1. Genes of interest - which you generated

2. GO database

3. The domain search: BP (biological process, e.g. cell cycle), MF (molecular function, e.g.
kinase) or CC (cellular component, e.g. nucleus, cytoplasm)

The result is in file Result.txt

S cat Result.txt

Google the first hit, “microtubule-based movement” including “malaria” as further search
term. What paper pops out first? Does this help to understand which genes the knocked out
transcription factor might regulate?

Can you repeat the analysis with with the other GO domains (CC and MF)?

Would you be able to repeat the analysis with up regulated genes in the mutant? Which
processes are enriched. Are the results expected?

Would it make sense to change the criteria to generate the list of up and down regulated
genes? If so, how and why?

4 Do not panic...

... if you don’t understand everything! This is a very advanced methodology. It
involved bioinformatics, statistics and deep knowledge into the parasite. At the
same time, the results depend on many parameters like, experiment setup, quality
of your RNA-Seq data, parameter used in the different steps and the quality of the
GO database.

Important: In the end you got several enriched functions as result of your
experiment that characterize the function of the knocked out gene! Well done!

S J
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4 N

Key aspects of differential expression analysis

Replicates and power

In order to accurately ascertain which genes are differentially expressed and by how
much it is necessary to use replicated data. As with all biological experiments doing
it once is simply not enough. There is no simple way to decide how many replicates
to do, it is usually a compromise of statistical power and cost. By determining how
much variability there is in the sample preparation and sequencing reactions we can
better assess how highly genes are really expressed and more accurately determine
any differences. The key to this is performing biological rather than technical
replicates. This means, for instance, growing up three batches of parasites, treating
them all identically, extracting RNA from each and sequencing the three samples
separately. Technical replicates, whereby the same sample is sequenced three times
do not account for the variability that really exists in biological systems or the
experimental error between batches of parasites and RNA extractions.

n.b. more replicates will help improve power for genes that are already detected at
high levels, while deeper sequencing will improve power to detect differential
expression for genes which are expressed at low levels.

P-values vs. g-values

When asking whether a gene is differentially expressed we use statistical tests to
assign a p-value. If a gene has a p-value of 0.05 we say that there is only a 5%
chance that it is not really differentially expressed. However, if we are asking this
question for every gene in the genome (~5500 genes for Plasmodium), then we
would expect to see p-values less than 0.05 for many genes even though they are
not really differentially expressed. Due to this statistical problem we must correct
the p-values so that we are not tricked into accepting a large number of erroneous
results. Q-values are p-values which have been corrected for what is known as
multiple hypothesis testing. Therefore it is a g-value of less than 0.05 that we
should be looking for when asking whether a gene is differentially expressed.

\ /
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/ Alternative software \

If you have a good quality genome and genome annotation such as for model
organisms e.g. human, mouse, Plasmodium, I would recommend mapping to the
transcriptome for determining transcript abundance. This is even more relevant if
you have variant transcripts per gene as you need a tool which will do its best to

determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016;
PMID: 27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280)
which will do this.

Alternatively you can map to the genome and then call abundance of genes,
essentially ignoring variant transcripts. This is more appropriate where you are less
confident about the genome annotation and/or you don’t have variant transcripts
because your organism rarely makes them or they are simply not annotated.
Tophat2 (Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al. 2016; PMID:
27560171), STAR (Dobin et al., 2013; PMID: 23104886) and GSNAP (Wu & Nacu,
2010; PMID: 20147302) are all splice-aware RNA-seq read mappers appropriate
for this task. You then need to use a tool which counts the reads overlapping each
gene model. HTSeq (Anders et al., 2015; PMID: 25260700) is a popular tool for
this purpose. Cufflinks (Trapnell et al. 2012; PMID: 22383036) will count reads and
determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from
tables of RNA-seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281),
EdgeR (Robinson et al., 2010; PMID: 19910308) and BaySeq (Hardcastle & Kelly,
2010; PMID: 20698981) are good examples.

What do | do with a gene list?

Differential expression analysis results is a list of genes which show differences
between two conditions. It can be daunting trying to determine what the results
mean. On one hand you may find that that there are no real differences in your
experiment. Is this due to biological reality or noisy data? On the other hand you
may find several thousands of genes are differentially expressed. What can you say
about that?

Other than looking for genes you expect to be different or unchanged, one of the
first things to do is look at Gene Ontology (GO) term enrichment. There are many
different algorithms for this, but you could annotate your genes with functional
terms from GO using for instance Blast2GO (Conesa et al., 2005; PMID:
16081474) and then use TopGO (Alexa et al., 2005; PMID: 16606683) to determine
whether any particular sorts of genes occur more than expected in your

\differentially expressed genes. /
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