Exploring Transcriptomic data

1. Exploring RNA sequence data in *Plasmodium falciparum*. Note: For this exercise use <u>http://www.plasmodb.org</u>

- **a.** Find all genes in *P. falciparum* that are up-regulated during the later stages of the intraerythrocytic cycle.
 - Hint: Use the fold change search for the data set "Transcriptome during intraerythrocytic development (Bartfai *et al.*)". For this data set, synchronized Pf3D7 parasites were assayed by RNA-seq at 8 time-points during the iRBC cycle. We want to find genes that are up-regulated in the later time points (30, 35, 40 hours) using the early time points (5, 10, 15, 20, 25 hours) as reference.

	Identify Genes based on RNA Seq Evidence
Identify Genes by:	Filter Data Sets: Type keyword(3) to filter Legend: FC Fold Change FCPV Fold Change P Percentile
Expand All Collapse All Text, IDs, Organism Genomic Position Gene Attributes Protein Attributes Protein Features Similarity/Pattern Transcript Expression EST Evidence SAGE Tag Evidence RNA Seq Evidence ChIP on Chip Evidence TF Binding Site Evidence TF Binding Site Evidence ChIP on Chip Evidence EST Evidence ChIP on Chip Evidence ChIP on Chip Evidence ChIP on Chip Evidence ChIP on Chip Evidence Evidence Second Protein Expression Cellular Location Evolution Population Biology	Organism Organism Obsta Set P. falciparum 3D7 Transcriptome during intraerythrocytic development (Bartfai et al.) P. falciparum 3D7 Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragan et al.) P. falciparum 3D7 Transcriptomes of 4 life cycle stages (Lopez-Barragan et al.) P. falciparum 3D7 NSR-seq Transcript Profiling of malaria-infected pregnant work and children (Vignali et et al.) P. falciparum 3D7 NSR-seq Transcript Profiling of malaria-infected pregnant work and children (Vignali et et al.) P. falciparum 3D7 NSR-seq Transcript Profiling of malaria-infected pregnant work and children (Vignali et et al.) P. falciparum 3D7 NSR-seq Transcript Profiling of malaria-infection (RBC) RNA-seq time series (fold change between each criteria Tutorial P For the Experiment Post-Infection (RBC) RNA-seq time series that are up or down regulated : why a Fold change >= Ots represent this gene's expression values for selected samples) Up or down regulated up or down regulated
	select all clear all and its expression value In the following Comparison Samples Iour 15 Hour 15 Hour 15 Hour 20

- Hint: there are a number of parameters to manipulate in this search. As you modify parameters on the left side note the dynamic help on the right side. See screenshots.
- **Direction**: the direction of change in expression. Choose up-regulated.
- **Fold Change>=:** the intensity of difference in expression needed before a gene is returned by the search. Choose 12 but feel free to modify this.
- Between each gene's AVERAGE expression value: This parameter sets the operation applied to reference samples. Fold change is calculated as the ratio of two values (expression in reference)/(expression in comparison). When you choose multiple samples to serve as reference, we generate one number for the fold change calculation by using the minimum, maximum, or average. Choose average
- **Reference Sample**: the samples that will serve as the reference when comparing expression between samples. choose 5, 10, 15, 20, 25
- And it's AVERAGE expression value: This is the operation applied to comparison samples. see explanation above. Choose average
- **Comparison Sample**: the sample that you are comparing to the reference. In this case you are interested in genes that are up-regulated in later time points choose 30, 35,

Fold Change Fold Change with pValue Percentile	
Identify Genes based on P.f. post info change)	ection (RBC) RNA-seq time series (fold Tutorial
For the Experiment Post-Infection (RBC) RNA-Seq time Series (*) retum protein coding (*) Genes that are up-regulated (*) (*) with a Fold change >= 12 (*) between each gene's average (*) expression value (*) in the following Reference Samples (*) (*) Hour 5 (*) Hour 5 (*) Hour 15 (*) Hour 20 Hour 25 (*) Hour 30 select all clear all (*) and its average (*) expression value (*) in the following Comparison Samples (*) (*) Hour 25 (*) Hour 30 (*) Hour 35 (*) Hour 30 (*) Hour 35 (*) Hour 30 (*) Hour 35 (*) Hour 30 (*) Hour 35 (*) Hour 30 (*) Hour 30 (*) Hour 30 (*) Hour 30 (*) Hour 31 (*) Hour 32 (*) Hour 32 (*) Hour 32 (*) Hour 32 (*) Hour 32 (*) Hour 33 (*) Hour 34 (*) Hour 35 (*) Hour 36 (*) Hour 36 (Example showing one gene that would meet search criteria (Dots represent this gene's expression values for selected samples) Up-regulated Up-regulated Outparts on the second s
	See the detailed help for this search.
± Advance	ed Parameters
Get	Answer

40

- **b.** For the genes returned by the search, how does the RNA-sequence data compare to microarray data?
 - Hint: PlasmoDB contains data from a similar experiment that was analyzed by microarray instead of RNA sequencing. This experiment is called: Erythrocytic expression time series (3D7, DD2, HB3) (Bozdech et al. and Linas et al.). To directly compare the data for genes returned by the RNA seq search that you just ran, add the column called "Pf-iRBC 48hr Graph".

Exploring microarray data in TriTrypDB.
 Note: For this exercise use http://www.tritrypdb.org

a. Find *T. cruzi* protein coding genes that are upregulated in amastigotes compared to trypomastigotes. Go to the transcript expression section then select microarray. The experiment is called: Transcriptomes of Four Life-Cycle Stages (Minning et al.).

Fold Change Percentile							
Identify Genes based on T cruzi CL Brener Esmeraldo-like Transcriptomes of Four Life-Cycle Stages Microarray (fold change) Tutorial							
For the Experiment Transcriptomes of Four Life-Cycle Stages tcruCLBrenerEsmeraldo-lik Foturn protein coding Genes that are up-regulated With a Fold change >= 2.0	Example showing one gene that would meet search criteria (Dots represent this gene's expression values for selected samples) Up-regulated						
between each gene's expression value in the following Reference Samples amastigotes trypomastigotes epimastigotes select all [clear all and its expression value in the following Comparison Samples	Comparison 2.0 fold Reference Samples Samples						
amastigotes by trypomastigotes by epimastigotes by metacyclics by select all clear all by Advance by Advanc	You are searching for genes that are up-regulated between one reference sample and one comparison sample. For each gene, the search calculates: fold change = <u>comparison expression value</u> reference expression value and returns genes when fold change >= 2.0. See the detailed help for this search. d Parameters						
Get <i>i</i>	Answer						

- Select the direction of regulation, your reference sample and your comparison sample. For the fold change keep the default value 2.
- How many genes did you find? Do the results seem plausible?
- Are any of these genes also up-regulated in the replicative insect stage (epimastigotes)? How can you find this out? (*Hint*: add a step and run a microarray search comparing expression of epimastigotes to metacyclics).

- Do these genes have orthologs in other kinetoplastids? (*Hint*: add a step and run an ortholog transform on your results).
- How many orthologs exist in *L. braziliensis*? (*Hint*: look at the filter table between the strategy panel and your result list. Click on the number in of gene to view results from a specific species). Explore your results. Did you find anything interesting?

My Str	atenies:	New	Openor		(212)	Basket	Dubli	c Strategies	(0)	aln				
wy Su	arcyres.	INCOV	Opener		(212)	Dasket	Fubi	c Strategies	(9)	cih				
Tc Life 147 S	Cyc Marra ' Genes tep 1	Tc LifeCy 223 Ge 42 Ge Step	c Marra enes	Ortholog 57 Genes Step 3	s)	Add Step	I			5	trategy:	IC LIFECYC	Marray (IC) * Rei Dupi Sav S D	name licate ve As Share velete
							_							
Strateg	gy: TcLi lick on a n	umber in this	ay (fc) table to limi	t/filter your i	results	Leishmania				Add 5	7 Genes 1	to Basket	Download	o/ Genes
All	Ortholog	C.fasciculata	L.brazilie Gene	ensis (nr s: 58)	L.donovan	i L.infantum	L.major	L.mexicana	L.tarentola	ie T.bi	ucei (nr G	ienes: 39)	T.congolense	
Results	Groups	strain Cf-Cl	MHOM/BR /75/M2903	MHOM/BR /75/M2904	BPK282A	1 JPCM5	strain Friedlin	MHOM/GT /2001/U1103	Parrot-Tai	Lister strain 427	TREU927	gambiense DAL972	IL3000	CL Bre Esmeralo
1760	37	85	46	57	52	57	59	57	59	36	39	36	34	330
1 🦳									\sim					•
Gene	Results	Genome Vie	ew Ar	alyze Resul	ts BETA									
First 1	2 3 Next I	ast	Advanced	Paging									Add C	Columns
۵ \$	Gene ID	Organis	m 🎱 🌲 🕻	enomic	0	Product Description	. 0	Cortholog	g(s) 🕹 🗧	Orthole	⁹ @ ‡	Paralog 🕹 🛔	Count	93 📕
🗇 Lb	rM.02.035	0 L. brazilien: MHOM/BR /75/M2904	sis LbrN 147,	1.02: 781 - 154,64	15 (-) A	BC1 transport outative	ter,	TcCLB.510	0149.80	OG5_126	568	8	11:	2
🗇 Lb	rM.11.096	0 L. brazilien MHOM/BR /75/M2904	sis LbrN 439,	1.11: 107 - 444,42	A (+)	BC transporte	er, putative	TCCLB.510	0149.80	DG5_126	568	8	11	2

- Finding genes based on RNAseq evidence and inferring function of hypothetical genes. Note: Use <u>http://plasmodb.org</u> for this exercise.
- **a.** Find all genes in *P. falciparum* that are up-regulated at least 50-fold in ookinetes compared to other stages: "Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragan et al.)". For this search select "average" for the operation applied on the reference samples.

Revise Step 1 : P falciparum 3D7 Transcriptomes of 7	sexual and asexual life stages RNASeq (fold change)
For the Experiment	Formula aboving any start would must accurb with its
Transcriptomes of 7 sexual and asexual life stagesP. falciparum Su Seven Sta	Example snowing one gene that would meet search criteria
return protein coding 🛊 😢 Genes	(Dots represent this gene s expression values for selected samples)
that are up-regulated	Up-regulated
with a Fold change >= 50	*
between each gene's average 💠 expression value 😯	
in the following Reference Samples	Comparison
Ring Early Trophozoite g Lath Trophozoite g Schizont g Schizont g Schizont g Schizont g Cametocyte II select all j clear all	Reference Comparison Samples
in the following Computer Compton (2)	
In the following Comparison Samples	A maximum of four samples are shown when more than four are selected.
Late Trophozite Schizont	You are searching for genes that are up-regulated between at least two reference samples and one comparison sample.
Gametocyte II Gametocyte V	For each gene, the search calculates:
Ookinete select all clear all	fold change = comparison expression value average expression value in reference samples
	and returns genes when fold change >= 50 . To narrow the window, use the maximum reference value. To broaden the window, use the minimum reference value.
	See the detailed help for this search.
Global min / max in selected time points 📀 🛛 Don't care	\$
⊞ Advanc	ed Parameters

- **b.** The above search will give you all genes that are up-regulated by 50 fold in ookinetes compared to the other stages. However, this does not mean that these genes are not expressed well in the other stages. How can you remove genes from the list that are likely not expressed in the other stages?
 - Hint: run a search for genes based on RNAseq evidence from the same experiment, but this time select the percentile search: P.f. seven stages RNA Seq (percentile)). What minimal percentile values should you choose? Try different values for example, 40 (minimum) and 100(maximum).

c. Which metabolic pathways are represented in this gene list? (*Hint:* add a step and transform results to pathways).

ly Strategies	New Opened (2)	All (173)	Basket Pu	ublic Strategies (8	B) Help			
Pathways)					Strategy: 32	07 7Stages RNASeq (fc) * 🛛 🔯		
3D7 7Stages RN 4228 Genes 3D7 7Stages RN 428 Genes 428 Genes 428 Genes 3D7 7Stages RN 428 Genes 3D7 7Stages RN 428 Genes 3D7 7Stages RN 428 Genes 428 Gene								
5 Metabolic Pathways trom Step 3 Add 5 Metabolic Pathways to Basket Download 5 Metabolic Pathways Metabolic Pathway Results Metabolic Pathway Results								
Strategy: 3D7	7Stages RNASeq (fc) Results		Ad	d 5 Metabolic Pa	thways to Basket	Download 5 Metabolic Pathway		
Metabolic Pathway Adva	7Stages RNASeq (fc) Results nced Paging		Ad	d 5 Metabolic Pa	thways to Basket	Download 5 Metabolic Pathway Add Columns		
Metabolic Pathway Adva Adva Pathway Id	7Stages RNASeq (fc) Results nced Paging Pathway @	Source @	Ad	 ➡ Total ➡ Pathway ♀ Enzymes 	Total Pathway Compounds	Download 5 Metabolic Pathway Add Columns Map - Painted With Transformed Genes (new Window)		
Metabolic Pathway Adva Pathway eco0230	75tages RNASeq (fc) Results nced Paging Pathway Purine metabolism	Source @	Ad	Total Pathway O Enzymes	Total Pathway Compounds	Add Columns Add Columns Map - Painted With Transformed Genes (new @ window) Pathway Map		
Metabolic Pathway Adva Pathway eco0230 eco0231	75tages RNASeq (fc) Results nced Paging Pathway Purine metabolism Puromycin biosynthesis	Source @ ec00230 ec00231	Ad	Total Total Pathway Enzymes 177 7	Total Pathway Compounds 100	Add Columns Add Columns Hap - Painted With Transformed Genes (new @ window) Pathway Map Pathway Map		
Metabolic Pathway Adva Pathway eco0230 ec00231 ec00240	75tages RNASeq (fc) Results nced Paging Pathway Purine metabolism Pyrimidine metabolism	Source ec00230 ec00231 ec00240	Ad	Total Total Pathway Enzymes 177 7 114	Total Pathway Compounds 100 73	Add Columns Add Columns Add Columns Map - Painted With Transformed Genes (new @ window) Pathway Map Pathway Map Pathway Map Pathway Map		
Pattabolic Pathway Adva Pathway ec00230 ec00240 ec00563	75tages RNASeq (fc) Results nced Paging Pathway Purine metabolism Puromycin biosynthesis Pyrimidine metabolism Glycosylphosphatijousitol(GPI)- anchor biosynthesis	Source 3 ec00230 ec00231 ec00240 ec00563	Ad	Total Pathway P Enzymes 177 7 114 9	Total Total Compounds 100 10 73 15	Add Columns Add Columns Map - Painted With Transformed Genes (new Window) Pathway Map Path		

- **d.** What happens is you revise the first step and modify the fold difference to a lower value 10 for example?
- e. PlasmoDB also has an experiment examining gene expression during sexual development in *Plasmodium berghei* (rodent malaria). Can you determine if there are genes that are up-regulated in both human and rodent ookinetes (compared to all other stages)? *Hint:* start by deleting the last step you added in this exercise (transform to pathways). To do this click on edit then delete in the popup. Next add steps for the *P. berghei* experiments "P berghei ANKA 5 asexual and sexual stage transcriptomes RNASeq". Note that you will have to use a nested strategy or by running a separate strategy then combining both strategies.

4. Find genes that are essential in procyclics but not in blood form *T. brucei*. Note: for this exercise use <u>http://TriTrypDB.org</u>.

- Find the query for High Throughput Phenotyping. Think about how to set up this query (*Hint*: you will have to set up a two-step strategy). Remember you can play around with the parameters but there is no one correct way of setting them up – try the default parameters first and select the "induced procyclics" as the comparison sample.

ſ	Identify Genes by:	Identify Gene	s based on High-Thro	ughput Phenotyping	
	Expand All Collapse All	Experiment 😢 🚨	Quantitated from the CDS Sequence Quantitated from gene model (5 prime UTR	+ CDS)	
	Genomic Position	Direction 😢 🛛	Decrease in coverage	(Genes)	
	Gene Attributes Protein Attributes	Reference Sample(s) 📀 🔍	Uninduced sample	()	
	Protein Features Similarity/Pattern Transcript Expression Protein Expression Cellular Location Putative Function	Comparison Sample(s) 🔮 🔤	Induced bloodstream form (day 3) Induced bloodstream form (day 6) Induced procyclics DIF (induced throughout growth) form' select all clear all	Edit T.b. RNAi fc 1612 Genes Step 1	Step
	GO Term EC Number	fold difference 😢 1.	.5		
	Metabolic Pathway Phenotype High-Throughput Phenotyping Evolution Population Biology	P value less than or equal to ? 18 Apply to Any or All Selected Samples? ? a Protein Coding Only: ? P	E-6 any © protein coding ©	J	
	·		Get Answer		

- Next add a step and run the same search except this time select the "induced bloodstream form" samples.
- How did you combine the results? Remember you want to find genes that are essential in procyclics and not in blood form.

5. Finding oocyst expressed genes in *T. gondii* based on microarray evidence. Note: For this exercise use <u>http://toxodb.org</u>

a. Find genes that are expressed at 10 fold higher levels in one of the oocyst stages than in any other stage in the "Oocyst, tachyzoite, and bradyzoite developmental expression profiles (M4) (John Boothroyd)" microarray experiment.

In this example the <u>maximum</u> expression value between genes in the reference and comparison groups was used to determine the fold difference.

- **b.** <u>Add a step</u> to limit this set of genes to only those for which all the non-oocyst stages are expressed below 50th percentile ... ie likely not expressed at those stages. *(Hint:* after you click on add step find the same experiment under microarray expression and chose the percentile search).
 - Select the 4 **non-oocyst** samples.
 - We want all to have less than 50th percentile so set *minimum percentile* to 0 and *maximum percentile* to 50.

- Since we want all of them to be in this range, choose ALL in the "Matches Any or All Selected Samples".
- Note: you can turn on the columns called "Tg-M4 Life Cycle Stages – graph" and "Tg-M4 Life Cycle Stage %ile- graph" (inside the "Tg-Life Cycle" Microarray) to view the graphs in the final result table.

- **c.** Revise the first step of this strategy and compare the <u>maximum</u> expression of the reference samples to the <u>minimum</u> of the comparison samples.
 - Does this result look cleaner/more convincing? Why?
 - Would you consider these genes to be oocyst specific?

Save this strategy so that you can use it for an exercise we are doing later during the course.

- **d.** Revise the first step of this strategy to find genes that are 3 fold higher in day 4 oocysts than any other life cycle stage in this experiment.
 - Do all these genes have day 4 oocysts as the global maximum time point?
 - Note that we still have the step to limit the percentile of non-oocyst samples to <= 50th percentile. What happens if you revise this step to also include the unsporulated and day 10 oocyst samples in this percentile range? Do you get more of fewer results back? Why?

My Strategies:	New Opened (1) All (1)	Basket Examples Help			
(Genes) Tg LCStage fc 67 Genes Step 1	12CStage %tile 1920 Genes Genes Step 2				Strategy: Tg LCStage fc * Rename Upplicate Save As Sake Datete
4 Genes from St Strategy: Tg LCS	tage fc			Ad	dd 4 Genes to Basket Download 4 Genes
E Filter by organis	m or strain (results removed by the filter will not	be combined into the next step.)			
Gene Results	(advanced) (results removed by the filter will not	be combined into the next step.)			
	Series				Add Column
Cons ID	Gene Group (representative	Conomia Logation (2	A Dreaduret Description	To-M4 Life Oucle Stages - graph @	Ta-M4 Life Orcia Stage %ile- graph @
	¥ gene) -		• · · · · · · · · · · · · · · · · · · ·		
TGME49_258800	TGGT1_258800	TGME49 ohrVIIb: 3.177,133 - 3.178,728 (+)	rhoptry kinase family protein ROP31 (ROP31)		
C TGME49_233300	TGGT1_233300	TGME49_chrVIII: 2,569,523 - 2,577,098 (-)	RhoGAP domain-containing protein		

Comparing RNA abundance and Protein abundance data. Note: for this exercise use <u>http://TriTrypDB.org</u>.

In this exercise we will compare the list of genes that show differential RNA abundance levels between procyclic and blood form stages in *T. brucei* with the list of genes that show differential protein abundance in these same stages.

a. Find genes that are down-regulated 2-fold in procyclic form cells. Go to the search page for Genes by Microarray Evidence and select the fold change search for the "Expression profiling of five life cycle stages (Marilyn Parsons)" experiment and configure the search to return protein-coding genes that are down-regulated 2 fold in procyclic form (PCF) relative to the Blood Form reference sample. Since there are two PCF samples, it is reasonable to choose both and average them.

b. Add a step to compare with quantitative protein expression. Select protein expression then "Quantitative Mass Spec Evidence" and the "Quantitative phosphoproteomes of bloodstream and procyclic forms (Tb427) (Urbaniak et al.)" experiment. Configure this search to return genes that are down-regulated in procyclic form relative to blood form.

- **c.** How many genes are in the intersection? Does this make sense? Make certain that you set the directions correctly.
- **d.** Try changing directions and compare up-regulated genes/proteins. (*Hint:* revise the existing strategy ... you might want to duplicate it so you can keep both). When you change one of the steps but not the other do you have any genes in the intersection? Why might this be?
- e. Can you think of ways to provide more confidence (or cast a broader net) in the microarray step? (*Hint:* you could insert steps to restrict based on percentile or add a RNA Sequencing step that has the same samples).