
Orthology and Phyletic Patterns

Homology

Getting to OrthoMCL from EuPathDB databases Note: For this exercise use <u>http://cryptodb.org</u> and <u>http://orthomcl.org/</u>

- a. Go to the gene page for the *Cryptosporidium parvum* gene with the ID: cgd7_2290
- b. What does this gene do? It is annotated as a hypothetical protein!
- c. Scroll down to the table labeled "Orthologs and Paralogs within CryptoDB". Does this gene have orthologs in other *Cryptosporidium* species? What about other organisms? (hint: click

Orthologs and Paralogs within CryptoDB Hide

Gene	Organism	Product	is syntenic	has comments		
Chro.70261	Cryptosporidium hominis TU502	hypothetical protein	yes	no		
CMU_034340	Cryptosporidium muris RN66	hypothetical protein, conserved	yes	no		

View the group (OG5_127679) containing this gene (cgd7_2290) in the OrthoMCL database

on the link below the table that takes you to OrthoMCL).

d. Does this protein have orthologs in other organisms? Does it have any orthologs in bacteria or archaea?

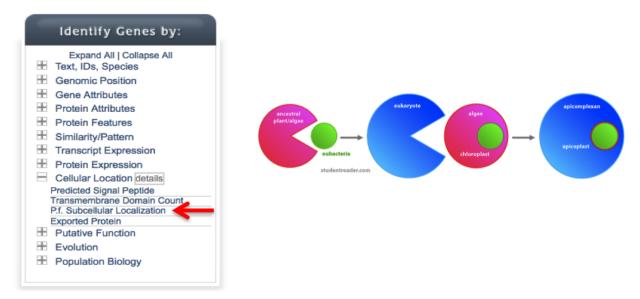
(Hint: mouse over the colorful boxes in the table to reveal the full species and phylum names – see image below).

												G	ou	p: (OG	5_1	L 27	67	9											
													(1	10 s	sequ	iend	:es)													
												A	id to Ba	sket	A	dd to Fa	vorites	2												
Sequenc	es &	Statis	tics	P	Fam	doma	ins (g	raphic)	PFa	m dor		(deta		_	SA	_	ister g	jraph											
hyletic Distribution Hide																														
Legend: () no ortholog () I one orthol																														
saur 0	cper	bant 0	Imon 0	spne 0	cbot 0	bmal 0	bpse 0	rsol 0	yent 0	sent 0	cbur 0	vcho 0	ypes 0	sfle 0	ftul 0	ecol 0	cjej 0	wsuc 0	rpro	wend	bsui 0	atum 0	rtyp 0	gsul 0	cpne 0	mtub 0	drad	deth 0	ctep 0	tmar
	syne 0	rbal 0	tpal 0	aaeo 0	nmar 1	hbut 0	smar 0	ssol 0	msed 0	ihos 0	cmaq 0	_	nequ 0		_	mmar 1	hwal 0	mjan 1	Ľ	msmi 0	Ibra 1		Imex 1	tviv 1	tcon 1	tbrg 1	Imaj 1	linf 1	toru 2	einv 1
edis 1	ddis 1	ehis 1	gthe 1	rcom 2	atha 3	osat 1	micr 1	ppat 2	otau 1	crei 1	vcar 1	tpse 1	cmer 1	tthe 1	pviv 1	pfal 1	pber 1	pyoe 1	pkno 1	pcha 1	tpar 1	tann 1	bbov 1	cmur 1	tgon 1	ncan 1	cpar 1	chom 1	aory 1	ylip 1
spom 1	psti 1	nora 1	scer 1	egos 1	cimm 1	cpos 1	calb 2	mgri 0	klac 1	dhan 1	anid 1	afum 1	gzea 1	cgla 1	ecun 1	eint 1	ebie 1	pchr 1	lbic 1	cneg 1	cneo 1	isca 1	dmel 1	aaeg 1	bmor 1	amel 1	cpip 1	phum 1	apis 1	agam 1
nvec	tadh	drer	trub	tnig	cint 0	oana	rnor	hsap	mmus	mdom	mmul	clup	ptro	ecab	ggal	cele	bmaa 2	cbri	sman 3	mbre	tvag	giae	glab	pram	glam					

- e. Take a look at the PFAM domain architectures found under the PFam domains (graphic) tab. Do all the proteins in this group have similar domain architecture?
- f. Based on the orthologs, what do you think this protein might be doing? If you had to give this gene a name, what would you call it?
- 2. Using the phyletic pattern tool in OrthoMCL Note: For this exercise use <u>http://orthomcl.org/</u>

How many protein groups in OrthoMCL <u>do not</u> have any orthologs in bacteria or archaea? (Hint: go to the "Phyletic Pattern" search in the Evolution section of the "Identify Ortholog Groups"

and the second se	tegles My Baske	t (0) Tools 🔨 Dat	a Summary * Downloads Community *	My F
ata Summary	Identify O	rtholog Groups	Identify Protein Sequences	Tools:
Protein Sequences: 1,398,546 Ortholog Groups: 124,740 ews and Tweets pommunity Resources	Text, IDs Group ID(s Text Terms Evolution Phyletic Pa Function Pfam ID o	ittern	Text, IDs Sequence ID(s) Group ID(s) Text Terms Function PFam ID or Keyword Enzyme Commission Assignment	BLAST Assign your proteins to groups Download OrthoMCL software Web Services Publications mentioning OrthoMCL
ducation and Tutorials	Enzyme Group Stat Number Avg % C % Pairs Avg % Id Avg % M Avg E-Vd	The search is controlled by the Phyli graphical tree display is a friendly we in the graphical tree display: • Click on -/+ to show or hide subti	hich taxa or species to include or exclude in the profile. erstand other icons.	ipecity.
	rig L V		nts 🖋 =must be in group 🖋 =at least one subtaxon must be in group 🗮	Processor
L	OrthoMCL 5 1 ©2013 The EuPath[÷Root (ALL): [⊕] -X Bacteria (BACT): [⊕] -X Archaea (ARCH):		
	acoro na corana	. Eukaryota (EUKA):		


category). To specify a phyletic pattern click on the icon next to the taxonomic group or species to include or exclude it.

- a. How many protein groups do not contain orthologs from eukaryotes?
- b. Find all groups that contain orthologs from at least one species of Cryptosporidium and Giardia but not from bacteria or archaea.

All EuPathDB sites also have a phyletic pattern search that uses OrthoMCL data under Genes -> Evolution -> Orthology Phylogenetic Profile. This search is very useful to identify genes in your organism of interest that are restricted in their profile. For example, you frequently want to identify genes that are conserved among organisms in your genus but not present in the host as these genes may make good drug targets or vaccine candidates. Optional: go to your favorite EuPathDB site and run this search to identify all genes that are not present in human or mouse.

3. Using the orthology transform tool to identify apicoplast targeted genes in Toxoplasma and Neospora.

Note: For this exercise use http://eupathdb.org

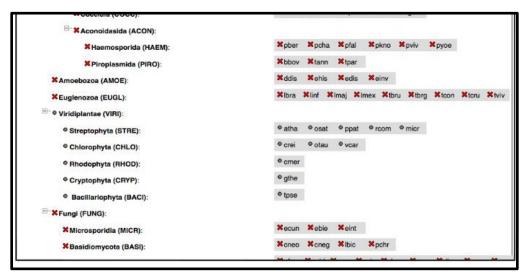


- a. Start by finding genes in *Plasmodium* that are predicted to target to the apicoplast. Hint: click on "Cellular Location" then on "P.f. Subcellular Localization"; see image below.
- b. Transform the results of the above search to their *Toxoplasma* orthologs. Hint: add a step, then select "Transform by Orthology". On the search page, select all Toxoplasma and Neospora.

		Add Step	
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight	Genes Genomic Segments (DN/ Motif) SNPs ORFs SAGE Tags	A Text, IDs, Organism Genomic Position Gene Attributes Protein Attributes Protein Features Similarity/Pattern Transcript Expression Protein Expression Cellular Location Putative Function Evolution Population Biology	~

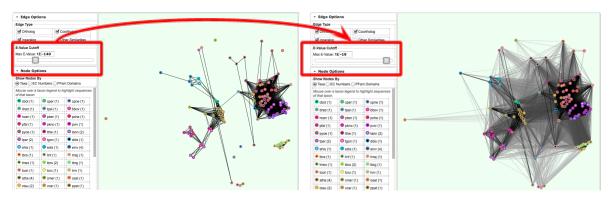
c. Although *Cryptosporidium* is an apicomplexan parasite it has actually lost its apicoplast! Can you use this fact to refine your results from the above search?

Hint: try subtracting out any orthologs present in *Cryptosporidium*. You will need to use a nested strategy.


4. Combining searches in OrthoMCL (Use <u>http://orthomcl.org</u> for this exercise).

Find all plant proteins that are likely phosphatases that do not have orthologs outside of plants.

a. Use the text search to find OrthoMCL groups that contain the word "*phosphatase*" (note that the search should be run without the quotation marks but with the asterisks).


b. Add a step and run a phyletic pattern search for groups that contain any plant protein but do not contain any other organism outside plants. (hint: make sure everything has a red x on it except for plants (Viridiplantae (VIRI)), which should be a grey circle).

c. How many groups did you return? Explore the multiple sequence alignments from some of these groups. (Hint: click on a group ID and open the MSA tab).

Text 1560 Groups Step 1 Step 1									
	Group: (DG5_150204							
	(10 s	equences)							
	Add to Basket	Add to Favorities							
Sequences & Statistics)	PFam domains (details) MSA duster graph							
Phyletic Distribution H	ide								
Legend: 0 no o	Sequences & Statistics PFam domains (g MUSCLE (3.7) multiple sequ								
	otau estExt fgeneshl_pg.C_Chr_06 osat NP_001052931 osat NP_001052931 room 30710.0013 ppat e_gul.29.62.1 atha NP_01031252 atha NP_01031252 atha NP_01031252 atha NP_01031252 atha NP_01031252 atha NP_01031252 atha NP_01031252 atha NP_01032931 room 3076.00147178 osat NP_001052931 room 3170.0013999 atha NP_54504 ppat e_gul.29.62.1 atha NP_54504 pat e_gul.29.62.2 atha NP_017008 room 30706.m000733	MSRP							
	otau iestExt fgeneshl.pg.C.Chr_06 omat NP_001052931 omat NP_001052931 room 30170.m013899 atha NP_56504 ppat ie_ggl.23.651 ppat ie_ggl.23.651 atha NP_56504 rcom 30066.m000733 otau estExt fgeneshl.pg.C.Chr_06 omat NP_001052931 otau iestExt fgeneshl.pg.C.Chr_06 omat NP_001051231 rcom 30770.m013899 atha NP_56504 ppat ie_gwl.29.62.1	KACABHCAETFAGEUTSGLDGDGALEBELEDGAGDAFEBITEALIRAFEVUVDETFVAHUVE SGAAVTARENILSWNCUVDET-SGDEWLAALPRALVAGFVTGTKOFGTE NGALTTKENLLSNULATFADSGDEWLAALPRALVAGFVTGTKOFGTKARS SAAAITTKENLLSNULATFADWLAALPRALVAGFVTGKOFGTKARS SAAAITTKENLLSNULATFBOWTAALPRALVAGFVTGKOFGTRAR SAAAITTKENLLSNULATFBOWLAALPRALVAGFVTGKOFGTRAR SAAAITTKENLLSNULATFBO							

- 5. Exploring a specific OrthoMCL group examining the cluster graph. (Use http://orthomcl.org for this exercise).
 - a. Visit the orthomcl group OG5_127676. You can either type the ID in the group quick search option at the top of the page of follow this link: http://orthomcl.org/group/OG5_127676
 - b. *Examine the "Sequences & Statistics" tab:* Based on the EC description and the product descriptions of the members of this group, what kind of a protein does this group represent? What is the phylogenetic distribution of the members of this group?
 - c. *Examine the "PFam Domains (graphic)" tab:* How many PFam domains are represented in this group? What is the most common on? Which one is the least common one?
 - d. *Examine the "Cluster Graph" tab:* Modify the E-value cutoff slider. What happens when you increase the E-value? What happens when you decrease the E-value? Can you identify subclusters?

