Introduction: Regular Expressions (regexp)

A regular expression (regexp) is a powerful notational algebra that describes a
string or a set of strings that are used to find patterns (pattern matching).
Pattern matching is defined as a true or false answer - in other words, if the
pattern described in the regex is found in a string of letters, the answer is true.
If the pattern is not found the answer is false.

Regular expressions are made up of terms, operators and modifiers.

Terms are the strings or substrings, for example the term "Kinase", will match
to substrings. In the string "Protein Kinase", "Kinase" is then a term that
matches a substring.

Operators combine terms and expressions. For example
grouping with expression like ([0-9]+)
alternation with expression or literal characters like zinc | transmem

repetition with * + ? {min,max} specifies how many times the preceding
expression may match.

But what about concatenation (combining two substrings)? That is implicit.
If you want to combine two expressions you can simply specify them as such.

Operators have precedence, like arithmetic operators. By grouping the
expression you can change the precedence.

The regexp MA{5} would match MAAAAA whereas
(MA){5} would match MAMAMAMAMA.

Modifiers change the rules, like the compilation flag IGNORECASE we can set
with re.l or re.IGNORECASE. Other flags are re.M for multiline, re.S for to make
"." to match any character including newline.

Protein Motifs can be described by regular expressions.

Most often the binding sites of proteins have particular requirements that limits
the number of residues as well as the amino acids that are part of the binding
site. Clustering these motifs would enable us to define a pattern for this
particular site. Once you make the pattern and make it regexp friendly, it is
easy to write computer programs that can search a new protein sequence to
find these motifs.

Writing regular expressions:
The necessary regexp notations we need to represent aa in a motif are

N-terminal residue

C-terminal residue

Any residue

Optional residue

Representation of gaps (i.e. variable length regexps)

Before doing that let us familiarize ourselves with the following regexp
metacharacter table

AA propert Amino acids ode

0

Acidic DE 0

Alcohol ST 1

Aliphatic IV 2

Aromatic FHWY 3

Basic KRH 4

Charged DEHKR 5

Hydrophobic AVILMFYW 6

Hydrophilic KRHDENQ 7

Polar CDEHKNQRST 8

Small ACDGNPSTV 9

Tiny AGS B

Turnlike ACDEGHKNQRST Z

Any ACDEFGHIKLM

NPQRSTVWY
Other useful metacharacter:
Meta Character Name Meaning How do we use
them?
dot Any character except Any aa/gap

newline

[a-Z] character class Match any char from amino acid in one
atoz letter code

[*a-z] negated character Match all except a-z reject certain amino

class acids

? optional character If the previous char is optionally match
there match it, previous amino acid
otherwise don't care
otherwise don't care

* star match zero or more find >=0 'clones’
time

+ plus match one or more find >=1 'clones’
time

~ caret Match at the N terminal

beginning

S dollar Match at the end
| alternation Match either
expression it
separates
{m,n} range specifier m minimum
(operator) required n
Examples:

C-terminal
Match either or

Match variable
number of aa's or
allow variable

gaps

Find genes whose protein product contains a motif pattern that you specify.,
e.g. "CC6+RK", which means "two cysteines followed by one or more
hydrophobic amino acids, followed by arginine, then lysine". The pattern need
not be well conserved. If you can describe it in words, you can probably use
this tool to create an "expression” that can search other proteins for similar

patterns.

Another example is the pattern of the Pexel motif, which can be represented
as "R.L.[EQD]", meaning "an arginine, then any amino acid, then a leucine, then
any amino acid, then either an aspartic acid, a glutamic acid, or a glutamine”.

