Exploring Transcriptomic data

1. Exploring RNA sequence data in *Plasmodium falciparum*. Note: For this exercise use <u>http://www.plasmodb.org</u>

- **a.** Find all genes in *P. falciparum* that are up-regulated during the later stages of the intraerythrocytic cycle.
 - Hint: Use the fold change search for the data set "Transcriptome during intraerythrocytic development (Bartfai *et al.*)". For this data set, synchronized Pf3D7 parasites were assayed by RNA-seq at 8 time-points during the iRBC cycle. We want to find genes that are upregulated in the later time points (30, 35, 40 hours) using the early time points (5, 10, 15, 20, 25 hours) as reference.

Identify Genes based on RNA Seq Evidence

- There are a number of parameters to manipulate in this search. As you modify parameters on the left side note the dynamic help on the right side. See screenshots.
- **Direction**: the direction of change in expression. Choose up-regulated.
- Fold Change>= the intensity of difference in expression needed before a gene is returned by the search. Choose 12 but feel free to modify this.
- **Between each gene's AVERAGE expression value:** This parameter appears once you have chosen two Reference Samples and defines the operation applied to reference samples.

Fold change is calculated as the ratio of two values (upregulated ratio = expression in comparison)/(expression in reference). When you choose multiple samples to serve as reference, we generate one number for the fold change calculation by using the minimum, maximum, or average. Choose average

- Reference Sample: the samples that will serve as the reference when comparing expression between samples. choose 5, 10, 15, 20, 25
- And its AVERAGE expression value: This is the operation applied to comparison samples. see explanation above. Choose average
- **Comparison Sample**: the sample that you are comparing to the reference. In this case you are interested in genes that are up-regulated in later time points choose 30, 35, 40

- **b.** For the genes returned by the search, how does the RNA-sequence data compare to microarray data?
 - Hint: PlasmoDB contains data from a similar experiment that was analyzed by microarray instead of RNA sequencing. This experiment is called: Erythrocytic expression time series (3D7, DD2, HB3) (Bozdech et al. and Linas et al.) or Pf-iRBC 48hr for shorter column headings. To directly compare the data for genes returned by the RNA-seq search that you just ran, add the column called "Pf-iRBC 48hr Graph".

OPTIONAL: You can also run a fold change search using this experiment to compare results on a genome scale. Add a step to your strategy and intersect the results of a fold change search using the "Erythrocytic expression time series (3D7, Dd2, HB3) (Bozdech et al. and Linas et al.)" experiment (under microarray evidence). Configure it similarly to the RNAseq experiment although you will probably need to make the fold change smaller (try 2 or 3) due to the decreased dynamic range of microarrays compared to RNA-seq.

2. Exploring microarray data in TriTrypDB. Note: For this exercise use <u>http://www.tritrypdb.org</u>

a. Find *T. cruzi* protein coding genes that are upregulated in amastigotes compared to trypomastigotes. Go to the transcript expression section then select microarray. Choose

Fold Change Percentile	
Identify Genes based on T cruzi CL Br Four Life-Cycle Stages Micros	ener Esmeraldo-like Transcriptomes of array (fold change) Tutorial 📷
For the Experiment Transcriptomes of Four Life-Cycle Stages tcruCLBrenerEsmeraldo-lik For the protein coding C Genes that are up-regulated C C Genes with a Fold change >= 2.0 C	Example showing one gene that would meet search criteria (Dots represent this gene's expression values for selected samples) Up-regulated
between each gene's expression value? In the following Reference Samples ? amastigotes between each gene's expression value? metacyclics select all [clear all and its expression value? In the following Comparison Samples ?	Comparison 2.0 fold Reference Comparison Samples Samples
amastigotes trypomastigotes epimastigotes metacyclics select all clear all	You are searching for genes that are up-regulated between one reference sample and one comparison sample. For each gene, the search calculates: fold change = <u>comparison expression value</u> reference expression value and returns genes when fold change >= 2.0. See the detailed help for this search. d Parameters
Get	Answer

the fold change (FC) search for the data set called: **Transcriptomes of Four Life-Cycle Stages** (Minning et al.).

- Select the direction of regulation, your reference sample and your comparison sample. For the fold change keep the default value 2.
- How many genes did you find? Do the results seem plausible?
- Are any of these genes also up-regulated in the replicative insect stage (epimastigotes)? How can you find this out? (*Hint*: add a step and run a microarray search comparing expression of epimastigotes to metacyclics).

- Do these genes have orthologs in other kinetoplastids? (*Hint*: add a step and run an ortholog transform on your results).
- How many orthologs exist in *L. braziliensis*? (*Hint*: look at the filter table between the strategy panel and your result list. Click on the number in the table under a species to view results from a specific species). Explore your results. Scan the product descriptions for this list of genes. Did you find anything interesting? Perhaps a GO enrichment analysis would support your ideas.

My Str	ategies:	New	Openeo	(1) Al	(212)	🗇 Basket	Publi	c Strategies	(9) Hel	р				
Genes)										S	trategy:	Tc LifeCvc	Marrav (fc) *	×
		Tc LifeCy 223 Ge	c Marra enes										Rei Dupi Sav	name licate /e As
Tc Life	Cyc Marra 7 Genes			Orthologs 57 Genes	s _)	Add Step							S	Share elete
S	itep 1	Step	2	Step 3										
							-	4						
57 Ger Strateg	nes from gy: Tc L lick on a r	1 Step 3 ifeCyc Marra	ay (fc) table to limi	t/filter your r	results					Add 5	7 Genes	to Basket	Download 5	57 Genes
		Crithidia		, jour	oouno	Leishmania	1							
All	Ortholog Groups	C.fasciculata	L.brazilie Gene	ensis (nr s: 58)	L.donov	ani L.infantum	L.major	L.mexicana	L.tarentolae	T.br	ucei (nr G	ienes: <mark>39</mark>)	T.congolense	
Results		strain Cf-Cl	MHOM/BR /75/M2903	MHOM/BR /75/M2904	BPK282	A1 JPCM5	strain Friedlin	MHOM/GT /2001/U1103	Parrot-Tarli	Lister strain 427	TREU927	gambiense DAL972	IL3000	CL Br Esmeral
1760	37	85	46	57	52	57	59	57	59	36	39	36	34	33
1														
Gene	Results	Genome Vie	ew Ar	alyze Resul	ts BET	Q								
First 1	2 3 Next I	Last	Advanced	Paging									Add C	Columns
۵ \$	Gene ID	Organis	m 🥝 🌲 🕻	enomic ocation	٩	Product Description	n 🥝 🔒	Cortholog	g(s) 🕹 🌲	Ortholo Group	9@ ‡F	Paralog 🔕 🔒	Count	93 📊
🗇 Lb	rM.02.035	0 L. brazilien: MHOM/BR /75/M2904	sis LbrN 147,	1.02: 781 - 154,64	5 (-)	ABC1 transpor putative	rter,	TcCLB.510	0149.80 00	65_1265	568	8	11:	2
🛆 Lb	rM.11.096	0 L. braziliens MHOM/BR /75/M2904	sis LbrN 439,	4.11: 107 - 444,42	25 (+)	ABC transporte	er, putative	e TcCLB.510	0149.80	65_1265	568	8	11:	2

- 3. Finding genes based on RNAseq evidence and inferring function of hypothetical genes. Note: Use <u>http://plasmodb.org</u> for this exercise.
- a. Find all genes in *P. falciparum* that are up-regulated at least 50-fold in ookinetes compared to other stages: "Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragan et al.)". For this search select "average" for the operation applied on the reference samples.

Revise Step 1 : P falciparum 3D7 Transcriptomes of 7	sexual and asexual life stages RNASeq (fold change)
For the Experiment Transcriptomes of 7 sexual and asexual life stagesP, falciparum Su Seven Sta ♀ return (protein coding ♀) ♥ Genes that are (up-regulated ♀) ♥ with a Fold change >= [50] ♥	Example showing one gene that would meet search criteria (Dots represent this gene's expression values for selected samples) Up-regulated
with a Fold change >= [5] between each gen's varage) corpression value in the following Reference Samples W Ring Bany Trophozoile U Lale Trophozoile Schizont Sector all clear all The following Comparison Samples Cather Trophozoile Schizont Schizont Banetsoyte V Schizont	<figure><text><text><text><text><text><text></text></text></text></text></text></text></figure>
Global min / max in selected time points 🐨 Count date	
± Advance	d Parameters

- **b.** The above search will give you all genes that are up-regulated by 50 fold in ookinetes compared to the average expression level of other stages. Despite the high fold change, some genes in the list may be highly expressed in the other stages. How can you remove genes from the list that are highly expressed in the other stages?
 - Hint: Run a search for genes based on RNA Seq evidence from the same experiment, but this time select the percentile search: P.f. seven stages - RNA Seq (percentile). What minimal percentile values should you choose? 40 – 100%? How does setting the any / all samples impact the result Which would be better in this case?
 - Hint II: Try changing the operator from average to maximum for the set of non-ookinete stages in your initial fold change search. What does this do? How do the resulting genes compare with the two step strategy you generated in the first hint? Which hint do you think works better?

			Identify Ge	nes based on RNA Seq Evidence					
Search for Genes	Filter Data Se	ts: Type keyword(s)) to filter Legend:	DE Differentia FC Fold Chan P Percentile					
expand all collapse all	∽ Organ	iism 🔅	Data Set		Cho	ose a s	earch		
Find a search Q	P. berghei AN	NKA	5 asexual and sexual sta	age transcriptomes (Hoeijmakers et al.)		FC	Р		
Iext Gene models Annotation, curation and identifiers Genemic Lection	P. chabaudi c	chabaudi	Trophozoite transcripton al.)	nes after mosquito transmission or direct injection into mice (Spence et	DE	FC	Р		
Genomic Location Taxonomy	P. falciparum	parum 3D7 NSR-seq Transcript Profiling of malaria-infected pregnant women and children (Vignali et al.)							
Onnology and synteny Phenotype Constitution	P. falciparum	3D7	Polysomal and steady-s	tate asexual stage transcriptomes (Bunnik et al.)		FC	Р		
Epigenomics	P. falciparum	3D7	Blood stage transcripton	ne (3D7) (Otto et al.)		FC	Р		
EST Evidence	P. falciparum	3D7	Ribosome and steady st	tate mRNA sequencing of asexual cell cycle stages (Caro et al.)		FC	P		
RNA Seq Evidence	P. falciparum	3D7	Transcriptomes of 7 sex	ual and asexual life stages (Lopez-Barragan et al.)		FC	P		
Sequence analysis Structure analysis	P. falciparum	arum 3D7 Intraerythrocytic cycle transcriptome (3D7) (Hoeijmakers et al.)							
Protein properties Protein targeting and localization	P. falciparum	Identify Ge	cinarum Transcriptomes of 7 sexual and asexual life	•	FC				
Pathways and interactions	P. falciparum	:	sta	stages RNASeq (percentile)					
 Immunology 	P. falciparum		Experiment (Transcriptomes of 7 sexual and asexual life stages HTSeq union - Sense		FC			
expand all collapse all	P. yoelii yoeli	i	Samples 🥹	Ø Ring		FC			
				Exity Trophotole Liste Trophotole Solucet Solucet Genetocyte II Genetocyte V Genetocyte V Genetocyte V					
			Minimum expression percentile 📀	40					
			Maximum expression percentile 📀	100					
		Matc	hes Any or All Selected Samples? 📀	any 🖸	T				
			Protein Coding Only: 📀	protein coding					
				Get Answer					

c. Which metabolic pathways are represented in this gene list? *Hint: add a step and transform results to pathways*. How does this result compare to running a pathways enrichment on step 2?

y	Strategies: Ne	w Opened (1)	All (231)	💮 Basket 🛛 P	ublic Strategies (8	3) Help				
ath 3Di	T 7 Stages RN/ 31 Genes Stap 1	ages RN/ Genes Jenes Jenes Jenes	thwy ays	Add Step		٤	Strategy: 3	D7 7Stages F	RNASeq (f	C)(2) Rename Duplicate Save As Share Delete
_	Step 1 Ste	ep 2 Step 3								
Me Fir	etabolic Pathway Results	Advanced Paging		A Pathway 🕢	▲ No. of 👩	Total	Downlo	oad Add to I way Q	Basket Map - P With Tr	Add Column ainted ansformed 3
Me Fir	etabolic Pathway Results	Advanced Paging			No. of Enzymes	Total Pathway Enzymes	Downle Tota Path Com	pad Add to way Q pounds	Basket Map - P With Tr Genes (window	Add Column ainted ansformed (new /)
Me Fir	ec00230	Advanced Paging		Pathway O Source	No. of Enzymes	Total Pathway Enzymes	Downlo Tota Path Com	oad Add to I way Q pounds	Basket Map - P With Tr Genes (window Pa	Add Column Painted ansformed (new () athway Map
Me Fir	tabolic Pathway Results table Pathway Id c00230 ec00231	Advanced Paging		Pathway O Source KEGG KEGG	No. of Enzymes	Total Pathway Enzymes 179 7	Downle Downle Downle Path Com 100 12	oad Add to way Q pounds	Basket Map - P With Tr Genes (window Pa	Add Column rainted ansformed (new (r) athway Map athway Map
Me Fir	tabolic Pathway Results tabolic Pathway Results Pathway Id ec00230 ec00231 ec00240	Advanced Paging Pathway Purine metabolism Puromycin biosynthesis Pyrimidine metabolism		Pathway O Source KEGG KEGG KEGG	No. of Enzymes	Total Pathway Enzymes 179 7 114	Downly Tota Path Com 100 12 75	bad Add to I way Q pounds	Basket Map - P With Tr Genes (window Pa Pa	Add Column Painted ansformed (new) athway Map athway Map athway Map
Me	stabolic Pathway Results st 1 2 Next Last Pathway Id ec00230 ec00231 ec00240 ec00563	Advanced Paging Pathway Purine metabolism Puromycin biosynthesis Pyrimidine metabolism Glycosylphosphatidylino anchor biosynthesis	sitol(GPI)-	REGG KEGG KEGG KEGG KEGG	No. of Enzymes 1 1 1 1 1	Total Enzymes 179 7 114 20	Downlo Com 100 12 75 17	bad Add to way Q pounds	Basket Map - P With Tr Genes (window Pa Pa Pa Pa	Add Column ansformed new asthway Map athway Map athway Map
Me Fir	tabolic Pathway Results st 1 2 Next Last Pathway Id ec00230 ec00231 ec00240 ec00563 ec00563 ec00583	Advanced Paging Pathway Purine metabolism Puromycin biosynthesis Pyrimidine metabolism Glycosylphosphatidylino anchor biosynthesis Drug metabolism - other	isitol(GPI)- r enzymes	➡ Pathway Source KEGG KEGG KEGG KEGG KEGG	No. of Enzymes	 Total Pathway Enzymes 179 7 114 20 32 	Downl- Comparison Downl- Tota Poth Poth 100 12 75 17 39	ad Add to way Q pounds	Basket Map - P With Tr Genes (window Pa Pa Pa Pa Pa Pa	Add Column 'ainted ansformed inew athway Map athway Map athway Map athway Map
	Atabolic Pathway Results st 1 2 Next Last Pathway Id ec00230 ec00231 ec00240 ec00563 ec00983 DENOVOPURINE2-PWY	Advanced Paging Purine metabolism Puromycin biosynthesis Pyrimidine metabolism Glycosylphosphatidylino anchor biosynthesis Drug metabolism - other superpathway of purine is novo biosynthesis II	isitol(GPI)- r enzymes nucleotides <i>de</i>	➡ Pathway Source KEGG KEGG KEGG KEGG KEGG MetaCyc	➡ No. of Enzymes 1	• Total Pathway 179 7 114 20 32 27	Downly Compared to the second Downly Compared to the second Downly Compared to the second Downly Compared to the second Downly Compared to the second Downly	oad Add to	Basket Map - P With Tr Genes (window Pa Pa Pa Pa	Add Column ansformed a ansformed a athway Map athway Map athway Map athway Map athway Map
	tabolic Pathway Results st 1 2 Next Last Pathway Id ec00230 ec00231 ec00240 ec00563 ec00963 DENOVOPURINE2-PWY LIPA-CORESYN-PWY	Advanced Paging Purine metabolism Puromycin biosynthesis Pyrimidine metabolism Glycosy/phosphatidylino anchor biosynthesis Drug metabolism - other superpathway of purine is uovo biosynthesis il Lipid A-core biosynthesis	ssitol(GPI)- r enzymes nucleotides de s	◆ Pathway Source KEGG KEGG KEGG KEGG KEGG MetaCyc MetaCyc	No. of Enzymes 1 1 1 1 1 1 1 1 1	* Total Enzymes 179 7 114 20 32 27 10	Downla • Point 100 12 75 17 39 112 41	ad Add to way Q pounds	Basket Map - P With Tr Pi Pi Pi Pi Pi Pi Pi Pi Pi	Add Column ansformed (new athway Map athway Map athway Map athway Map athway Map athway Map

- d. What happens if you revise the first step and modify the fold difference to a lower value -10 for example? Compare results when you also modify the "between each genes" parameter. What happens if you set this to maximum? Which value do you think is most stringent for ensuring at 10 fold up regulation compared to the other samples?
- **e.** PlasmoDB also has an experiment examining gene expression during sexual development in *Plasmodium berghei* (rodent malaria). Can you determine if there are genes that are up-

regulated in both human and rodent ookinetes (compared to all other stages)? *Hint:* start by deleting the last step you added in this exercise (transform to pathways). To do this click on edit then delete in the popup. Next, add steps for the *P. berghei* experiments "P berghei ANKA 5 asexual and sexual stage transcriptomes RNASeq". Note that you will have to use

My Strategies: New Opened	1) All (231) 🏠 Bas	ket Public Strategies	(8) Help		
(Genes) 3D7 7Stages RN, 4857 Genes 3D7 7Stages RN, 3107 7Stages RN, 31 Genes 7 Step 1 Step 2 Step 2	Add Step		S	Strategy: 3D7 7Stages RNASeq (fc)(2)	Rename Duplicate Save As Share Delete
Expanded View of Step Orthologs PbANKA 5Asex 26 Genes Step 1 Step 2	Add Step				×

a nested strategy or by running a separate strategy then combining both strategies.

4. Find genes that are essential in procyclics but not in blood form *T. brucei*. Note: for this exercise use <u>http://TriTrypDB.org</u>.

- Find the query for High Throughput Phenotyping. Think about how to set up this query (*Hint*: you will have to set up a two-step strategy). Remember you can play around with the parameters but there is no one correct way of setting them up –

Search for Genes	Identify Genes based on High-Throughput Phenotyping								
expand all collapse all Find a search Q	Experiment 🥹	Quantitated from the CDS Sequence Quantitated from gene model (5 prime UTF	R + CDS)						
▶ Gene models	Direction 📀	Decrease in coverage	(Genes)						
 Annotation, curation and identifiers Genomic Location Taxonomy 	Reference Sample(s) 📀	O Uninduced sample	(Genes)						
Orthology and synteny Phenotype High-Throughput Phenotyping Phenotype Genetic variation Transcriptomics Sequence analysis	Comparison Sample(s) 🛛	Induced bloodstream form (day 3) Induced bloodstream form (day 6) Induced procyclics DIF (induced throughout growth) form' select all clear all	Edit T.b. RNAi fc 1612 Genes Step 1	Step					
Structure analysis Protein properties									
Protein properties Protein targeting and localization	P value less than or equal to 📀	1E-6	T						
Function prediction Pathways and interactions Proteomics Immunology	Apply to Any or All Selected Samples? Protein Coding Only: 📀	any O protein coding							
expand all collapse all		Get Answer							

- Next add a step and run the same search except this time select the "induced bloodstream form" samples.
- How did you combine the results? Remember you want to find genes that are essential in procyclics and not in blood form.

5. Finding oocyst expressed genes in *T. gondii* based on microarray evidence. Note: For this exercise use <u>http://toxodb.org</u>

a. Find genes that are expressed at 10 fold higher levels in one of the oocyst stages than in any other stage in the "Oocyst, tachyzoite, and bradyzoite developmental expression profiles (M4) (John Boothroyd)" microarray experiment. In this example, the maximum expression value between genes in the reference and comparison groups was used to determine the fold difference.

- **b.** <u>Add a step</u> to limit this set of genes to only those for which all the non-oocyst stages are expressed below 50th percentile ... ie likely not expressed at those stages. (*Hint*: after you click on add step find the same experiment under microarray expression and chose the percentile search).
 - Select the 4 **non-oocyst** samples.
 - We want all to have less than 50th percentile so set *minimum percentile* to 0 and *maximum percentile* to 50.
 - Since we want all of them to be in this range, choose ALL in the "Matches Any or All Selected Samples".

- To view the graphs in the final result table, turn on the columns called "Tg-M4 Life Cycle Stages – graph" and "Tg-M4 Life Cycle Stage %ile- graph" (inside the "Tg-Life Cycle" Microarray).

- **c.** Revise the first step of this strategy and compare the <u>maximum</u> expression of the reference samples to the <u>minimum</u> of the comparison samples.
 - Does this result look cleaner/more convincing? Why?
 - Would you consider these genes to be oocyst specific?

6. Comparing RNA abundance and Protein abundance data. Note: for this exercise use <u>http://TriTrypDB.org</u>.

In this exercise we will compare the list of genes that show differential RNA abundance levels between procyclic and blood form stages in *T. brucei* with the list of genes that show differential protein abundance in these same stages.

a. Find genes that are down-regulated 2-fold in procyclic form cells. Go to the search page for Genes by Microarray Evidence and select the fold change search for the "Expression profiling of five life cycle stages (Marilyn Parsons)" experiment and configure the search to return protein-coding genes that are down-regulated 2 fold in procyclic form (PCF) relative to the Blood Form reference sample. Since there are two PCF samples, it is reasonable to choose both and average them.

b. Add a step to compare with quantitative protein expression. Select protein expression then "Quantitative Mass Spec Evidence" and the "Quantitative phosphoproteomes of bloodstream and procyclic forms (Tb427) (Urbaniak et al.)" experiment. Configure this search to return genes that are down-regulated in procyclic form relative to blood form.

	(4)		Add Step			x
Tb LifeCyc Marra 360 Genes Add Step	Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight Transform to Pathways Transform to Compounds	Genes Genome Semes ORFs	Text Gene models Annotation, curation and Genomic Location Taxonomy Orthology and synteny Phenotype Genetic variation Transcriptomics Sequence analysis	identifiers	Mass Spec. Evidence Quantitative Mass Spec. Evidence	
Step 1			Protein propertie		Add Step	(8)
			Protein targeting Add	d Step 2 : Q	uantitative Mass Spec. Evidence	
			Pathways and in	Filter Data Sets: e keyword(s) to filter	Legend: Dr rc Fol rcr F	'ol
			Proteomics	Organism	≎ Data Set	Choose a search
			T.	brucei TREU927	 Long siender vs short stumpy blood stage quantitative proteomes (Gunasekera et al) 	DC
	Add Step 2 : T.bru	. Quantitative phosphoproteom	es of bloodstream and	brucei TREU927	 Quantitative phosphoproteomes of bloodstream and procyclic forms (Tb427) (Urbaniak et al.) 	DC
	procyclic forms (Tb	427) Proteomics (direct compa	rison)	orucei TREU927	 Proteome of Procyclic vs Bioodstream forms by SiLAC (Butter et al.) 	DC
		Direction 😢 down-regulated 🔻		orucei TREU927	 Comparative proteomics of bloodstream and procyclic forms- Quantitative (T.b. 427) (Urbaniak et al.) 	
	Edit d	Samples () PCf-Bsfratio		ongolense 000	Insect and Bioodstream form Proteomes (quantitative) (Eyford et al.)	rc I
	Fold of			ruzi	Proteome during Metacyclogenesis, Quantitative (Dm28c) (de Godoy and Marchini et al.)	FOF
	Combine Genes in	Step 1 with Genes in Step 2:		ruzi	 SUMOylation enriched epimastigote proteome - Quantitative (CI Brenet) (Bayona et al.) 	107
		* 1 Intersect 2 0 1 Minu	15 2		(an erent / entrementer eren)	
		Relative to 2, using genomic colo	cation			
		Run Step]		

- **c.** How many genes are in the intersection? Does this make sense? Make certain that you set the directions correctly.
- **d.** Try changing directions and compare up-regulated genes/proteins. (*Hint:* revise the existing strategy ... you might want to duplicate it so you can keep both). When you change one of the steps but not the other do you have any genes in the intersection? Why might this be?
- **e.** Can you think of ways to provide more confidence (or cast a broader net) in the microarray step? (*Hint:* you could insert steps to restrict based on percentile or add a RNA Sequencing step that has the same samples).

7. Find genes with evidence of phosphorylation in intracellular *Toxoplasma* tachyzoites.

For this exercise use http://www.toxodb.org

Phosphorylated peptides can be identified by searching the appropriate experiments in the <u>Mass</u> <u>Spec Evidence</u> search page.

7a. Find all genes with evidence of phosphorylation in intracellular tachyzoites. Select the "Infected host cell, phosphopeptide-enriched (peptide discovery against TgME49)" sample under the experiment called "Tachyzoite phosphoproteome from purified parasite or infected host cell (RH) (Treeck et al.)"

7b. Remove all genes with phosphorylation evidence from purified tachyzoites.

7c. Remove all genes that are also present in the phosphopeptide-depleted fractions (select both intracellular and extracellular).

7d. Explore your results. What kinds of genes did you find? *Hint: use the Product description word column or perform a GO enrichment analysis of your results.* Could you achieve this same 105 genes with a two step strategy? *Hint: remove depleted and tachyzoite proteins in one step rather than two.*

7e. Are any of these genes likely to be secreted? Hint: add a step searching for genes with secretory signal peptides.

My S	trategie	s: Ne	w Ope	ened (1) All (1)	💮 Baske	et Pul	olic Strate	egies (14)	Help								
(Genes) Ma 18) ISS Spec 28 Genes Step 1	Mass 2089 0 405 G Ste	Spec Genes enes p 2	Mass Spec 3030 Genes 198 Genes Step 3	Signal Pep 1945 Genes 33 Genes Step 4		Add Step				Strate	gy: Mas	rs Spec		I	* Rena Duplic Save Shi Del	me ate As are ete
								_									_
33 G Strat ∋ ү (enes fro egy: <i>Ma</i> Click on a r	om Step 4 ass Spec	l is table to li	nit/filter your results													
					Eimeria					Hammondia	Neospora	a Sarcocystis n S.neurona (nr Genes: 0)		Toxoplasma			
All Results	Ortholog Groups	E.acervulina	E.brunetti	E.falciformis	E.maxima	E.mitis	E.necatrix	E.praecox	E.tenella	H.hammondi	N.caninum			: 0 T.gondii (nr Genes: 33)			
		Houghton	Houghton	Bayer Haberkorn 1970	Weybridge	Houghton	Houghton	Houghton	strain Houghton	strain H.H.34	Liverpool	SN3	SO SN1	GT1	ME49	RH	VEG
33	33	0	0	0	0	0	0	0	0	0	0	0	0	0	33	0	0
Gene	Results	Genome Vi	ew A	nalyze Results								Downloa	d Add to Ba	sket	Add	Colun	nns
۵	Gene ID	🗘 Tra	nscript ID	Gene Grou	p ative gene	.) 🙆	韋 Geno	mic Locat	ion (Gene) 🥝	韋 Produ	ict Descrip	otion 🕹 🛛	. :	🛱 #Trai	nscript	s 🙆	
⊕ T0	GME49_20	8830 TGME	19_208830-t	_208830-t26_1 TGME49_208830-t26_1 TGME49_chrlb:888,008891,283(-) hypothetical protein					1								
💮 Т	GME49_32	1640 TGME	49_321640-t	26_1 TGME4	9_321640-t26	6_1	TGME49	_chrlb:1,665	2471,675,489(-) cell divisio	n protein CD	C48AP			1		
⊕ T	GME49_223	140 TGME	49_223140-t	26_1 TGME4	9_223140-t26	6_1	TGME49	_chrll:1,469,	4761,475,491(+) tRNA bind	ling domain-o	containing p	protein		1		
ф т	GME49_25	2360 TGME	49_252360-t	26_1 TGME4	9_252360-t26	6_1	TGME49_	_chrlll:512,3	77515,416(+)	rhoptry kir (incomplet	ase family p te catalytic tri	rotein ROP iad)	24		1		
-																	

7f. Pick one or two of the hypothetical genes in your results and visit their gene pages. Can you infer anything about their function? Hint: explore the protein and expression sections.

7g. What about polymorphism data? Go back to your strategy and add columns for SNP data found under the population biology section. Explore the gene page for the gene that has the most

G	ene Results Ge	nome View Analy	ze Results						
Fi	rst 1 2 Next Las	t Advanced Pagin	9					Download Add to	Basket Add Columns
	韋 Gene ID	🗘 Transcript ID	Product Description	Contraction Strains	SNPs All Strains	SNP Ratio All	SNPs All Strains	SNPs with Stop Codons All Strains	SNPs All Strains
	TGME49_224280	TGME49_224280-t26_1	CPSF A subunit region protein	922	635	0.98	142	0	145
۵	TGME49_202490	TGME49_202490-t26_1	AP2 domain transcription factor AP2VIIa-7	593	328	0.95	129	0	136
	TGME49_311080	TGME49_311080-t26_1	transporter, cation channel family protein	551	360	1.51	115	0	76
	TGME49_321640	TGME49_321640-t26_1	cell division protein CDC48AP	548	446	1.04	52	0	50
	TGME49_205120	TGME49_205120-t26_1	hypothetical protein	447	185	2.2	180	0	82
۵	TGME49_313280	TGME49_313280-t26_1	WD domain, G-beta repeat- containing protein	443	367	1.81	49	0	27
	TGME49_286120	TGME49_286120-t26_1	prolyl endopeptidase	427	366	0.79	27	0	34
	TGME49_219640	TGME49_219640-t26_1	hypothetical protein	382	263	2.5	85	0	34
	TGME49_315700	TGME49_315700-t26_1	hypothetical protein	339	266	1.15	39	0	34
	TGME49_239440	TGME49_239440-t26_1	protein kinase (incomplete catalytic triad)	333	215	1.13	62	1	55
	TGME49_220350	TGME49_220350-t26_1	tRNA ligases class II (D, K and N) domain-containing protein	317	200	1.79	75	0	42
	TGME49_257595	TGME49_257595-t26_1	hypothetical protein	317	131	2.32	130	0	56
	TGME49_205625	TGME49_205625-t26_1	hypothetical protein	294	206	1.59	54	0	34
٢	TGME49_288880	TGME49_288880-t26_1	hypothetical protein	231	158	3.29	56	0	17
	TGME49_223140	TGME49_223140-t26_1	tRNA binding domain-containing protein	197	172	1.08	13	0	12
	TGME49_216840	TGME49_216840-t26_1	hypothetical protein	189	89	1.17	54	0	46
	TGME49_288370	TGME49_288370-t26_1	hypothetical protein	189	83	2.42	75	0	31
	TGME49_308070	TGME49_308070-t26_1	hypothetical protein	188	123	1.95	43	0	22
	TGME49_214080	TGME49_214080-t26_1	toxofilin	177	63	3.67	88	2	24
	TGME49_314280	TGME49_314280-t26_1	AAR2 protein	163	113	1.78	32	0	18

number of non-synonymous SNPs. Hint: you can sort the columns by clicking on the up/down arrows next to the column names.