
The accumulation of data produced by genome-scale 
research requires explicitly defined vocabularies to 
describe the biological attributes of genes in order  
to allow integration, retrieval and computation of the 
data1. Arguably, the most successful example of system-
atic description of biology is the Gene Ontology (GO) 
project2. GO is widely used in biological databases, 
annotation projects and computational analyses (there 
are 2,960 citations for GO in version 3.0 of the ISI Web of 
Knowledge) for annotating newly sequenced genomes3, 
text mining4,5, network modelling6 and clinical appli-
cations7, among others. GO has two components: the 
ontologies themselves, which are the defined terms and 
the structured relationships between them (GO ontol-
ogy); and the associations between gene products and the 
terms (GO annotations). GO provides both ontologies 
and annotations for three distinct areas of cell biology: 
molecular function, biological process, and cellular  
component or location.

Researchers who use GO should understand how the 
ontologies are structured and how genes are annotated 
so that they can avoid errors in interpretation. Here we 
describe the frequently overlooked aspects of GO and 
discuss their consequences through examples from  
common applications.

Ontology structure
Ontologies are formal representations of a specific knowl-
edge domain, in this case, cell biology. The GO ontology 
is represented as a directed acyclic graph (DAG) in which 
the terms are nodes and the relationships among them are 
edges. Key characteristics of a DAG in the context of GO 
are that: parent–child relationships are defined (FIG. 1), with 
parent terms representing more general entities than their 
child terms; and, unlike a simple tree (FIG. 1a), a term in a 
DAG can have multiple parents (red node or grey edge in 

FIG. 1b). These characteristics of the GO structure enable 
powerful grouping, searching and analysis of genes.

Fundamental aspects of GO annotations
A GO annotation associates a gene with terms in the 
ontologies and is generated either by a curator or 
automatically through predictive methods. Genes are 
associated with as many terms as appropriate as well as 
with the most specific terms available to reflect what is 
currently known about a gene. When a gene is annotated 
to a term, associations between the gene and the terms’ 
parents are implicitly inferred. Because GO annotations 
to a term inherit all the properties of the ancestors of 
those terms, every path from any term back to its root(s) 
must be biologically accurate or the ontology must be 
revised8. For example, if a gene is known to be specifically 
involved in ‘vesicle fusion’, it will be annotated directly to  
that term, and it is implicitly annotated (indirectly)  
to all of its parents’ terms, including ‘membrane fusion’, 
‘membrane organization and biogenesis’, ‘vesicle- 
mediated transport’, ‘transport’ and so on, back to the root 
node (FIG. 1c). Thus, a gene annotated to vesicle fusion can 
be retrieved not only with this term, but also with all of 
its parent terms, increasing flexibility and power when 
searching for and making inferences about genes.

Evidence codes — not all annotations are created equal. 
All GO annotations include an evidence code to record 
the type of information on which the annotation is based. 
Evidence codes can be broadly divided into four categories: 
experimental, computational, indirectly derived from either 
of the first two categories, or unknown. TABLE 1 describes 
the 14 evidence codes that are used by GO. Annotations 
derived from direct experimental evidence are generally 
thought to be of higher quality than those inferred from 
computational or indirect evidence, although this has 
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Abstract | The Gene Ontology (GO) project is a collaboration among model organism 
databases to describe gene products from all organisms using a consistent and computable 
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not been shown robustly. As of October 2007, there are 
over 16 million GO annotations. Strikingly, over 95% of 
these annotations are computationally derived and have 
not been manually curated; these are associated with the 
‘inferred from electronic annotation’ (IEA) evidence code. 
Most of these annotations come from the GO annotation 
project at the European Bioinformatics Institute (GOA9). 
In addition to the GOA set, individual model organisms 
also have a substantial portion of annotations not derived 

from direct experimental evidence (TABLE 2). Among 
the 27 organisms with more than 5,000 annotations, the 
portion of genes with at least one experimentally derived 
annotation varies widely from 1.1% to 90.9%. Although 
computational and indirectly derived annotations increase 
coverage significantly, they probably contain a higher 
portion of false positives. Researchers who use GO anno-
tations should be cognizant of the differences between  
annotations associated with different evidence codes.

Figure 1 | Simple trees versus directed acyclic graphs. Boxes represent nodes and arrows represent edges. a | An 
example of a simple tree, in which each child has only one parent and the edges are directed, that is, there is a source 
(parent) and a destination (child) for each edge. b | A directed acyclic graph (DAG), in which each child can have one or 
more parents. The node with multiple parents is coloured red and the additional edge is coloured grey. c | An example of 
a node, vesicle fusion, in the biological process ontology with multiple parentage. The dashed edges indicate that there 
are other nodes not shown between the nodes and the root node (biological process). A root is a node with no incoming 
edges, and at least one leaf (also called a sink). A leaf node is a node with no outgoing edges, that is, a terminal node with 
no children (vesicle fusion). Similar to a simple tree, A DAG has directed edges and does not have cycles, that is, no path 
starts and ends at the same node, and will always have at least one root node. The depth of a node is the length of the 
longest path from the root to that node, whereas the height is the length of the longest path from that node to a leaf41. 
is_a and part_of are types of relationships that link the terms in the GO ontology. More information about the 
relationships between GO terms are found online (An Introduction to the Gene Ontology).

Table 1 | Evidence codes used by GO

Evidence 
code

Evidence code description Source of evidence Manually 
checked

Current number 
of annotations*

IDA Inferred from direct assay Experimental Yes 71,050

IEP Inferred from expression pattern Experimental Yes 4,598

IGI Inferred from genetic interaction Experimental Yes 8,311

IMP Inferred from mutant phenotype Experimental Yes 61,549

IPI Inferred from physical interaction Experimental Yes 17,043

ISS Inferred from sequence or structural similarity Computational Yes 196,643

RCA Inferred from reviewed computational analysis Computational Yes 103,792

IGC Inferred from genomic context Computational Yes 4

IEA Inferred from electronic annotation Computational No 15,687,382

IC Inferred by curator Indirectly derived from experimental or computational 
evidence made by a curator

Yes 5,167

TAS Traceable author statement Indirectly derived from experimental or computational 
evidence made by the author of the published article

Yes 44,564

NAS Non-traceable author statement No ‘source of evidence’ statement given Yes 25,656

ND No biological data available No information available Yes 132,192

NR Not recorded Unknown Yes 1,185
*October 2007 release
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Annotation of ‘unknowns’ — we know what we don’t 
know. If the process, function or location of a gene is 
unknown, then it is annotated to the root node of the 
respective ontology with the evidence code ‘no biologi-
cal data available’ (ND). This indicates that a curator 
has exhaustively checked the literature and could find 
no data for the gene in question. The ND annotations 
provide a way to distinguish genes that are unannotated 
from those that are uncharacterized. Some databases 
also annotate genes to the root node with the evidence 
code ND when no orthologues with known function 
are identified on the basis of computational analyses. 
However, this is not performed consistently among data-
bases (S.Y.R., unpublished observations). Procedures 
are being developed, as part of the reference genome 
annotation project at GO, to perform these analyses 
more consistently among participating databases.

Annotation qualifiers — to be or not to be is crucial for 
GO. GO uses three qualifiers, contributes_to, colocal-
izes_with and NOT, to further refine annotations (see 
the GO annotation conventions). The NOT qualifier, 
which indicates the lack of a property, is most vital in 
data interpretation. This is used judiciously, only when 
there is potential for confusion or contradiction. For 
example, a gene product might have sequence similarity 

to protein kinases, but the curator can apply the NOT 
qualifier to indicate that, contrary to expectation, the 
gene product does not exhibit kinase activity based on 
published results. Although the total number of NOT 
annotations is minor, several databases have hundreds of 
these annotations (TABLE 3). Therefore, any analyses using 
GO annotations should consider the NOT qualifier and 
exclude them as appropriate. A quick survey of several 
GO profiling tools shows that many fail to properly con-
sider the NOT annotations (Supplementary information 
S1 (table)).

Ontology and annotation changes. The GO ontology 
and annotations are continually updated to reflect cur-
rent knowledge, to correct errors and to improve logi-
cal consistency. The GO ontology is updated daily and 
most of the annotation files are released weekly. GOA’s 
mappings between GO terms and other descriptors 
(for example, domains from the Interpro database or 
Enzyme Commission numbers), which are the major 
sources for IEA annotations, are updated monthly. Each 
change to the ontology is tracked, and when terms are 
deleted they retain their identifier but are flagged as 
‘obsolete’. These practices allow for versioning of the 
ontologies and annotations. Although annotations are 
robust to changes in the ontology because they are made 

Table 2 | Distribution of gene ontology (GO) annotations for species with more than 5,000 annotations

Species (NCBI taxon ID) Genes* with 
experimental 
annotations‡

Total 
annotated 
genes*

Percentage of 
genes* with at least 
one experimental 
annotation

Total genes* Percentage 
annotated§

Percentage 
known in 
genome||

Schizosaccharomyces pombe (4896) 4,482 4,930 90.9% 4,930 100% 90.9%

Saccharomyces cerevisiae (4932) 4,947 5,794  85.4% 5,794  100% 85.4%

Mouse (10090) 10,621 18,386 57.8% 27,289 67.4% 38.9%

Caenorhabditis elegans (6239) 4,614 14,154 32.6% 20,163 70.2% 22.9%

Human¶ (9606) 4,780 17,021 28.1% 20,887 81.5% 22.9%

Arabidopsis thaliana# (3702) 5,530 26,637 20.8% 27,029 98.5% 20.5%

Rat (10116) 3,566 17,243 20.7% 17,993 95.8% 19.8%

Fruitfly (7227)** 2,790 9,563 29.2% 14,141 67.6% 19.7%

Candida albicans (5476) 806 3,756 21.4% 6,166 60.9% 13.0%

Pseudomonas aeruginosa PAO1 (208964) 491 2,506 19.6% 5,568 45.0% 8.82%

Slime mold (44689) 797 6,892 11.6% 13,625 50.6% 5.9%

Trypanosoma brucei (5691) 449 3,914 11.5% 9,154 42.8% 4.92%

Zebrafish (7955) 1,235 13,574 5.8% 21,322 63.7% 3.7%

Plasmodium falciparum (5833) 188 3,243 5.8% 5,420 59.8% 3.47%

Rice (39947) 654 29,877 2.2% 41,908 71.3% 1.57%

Chicken¶ (9031) 75 6,063 1.2% 16,737 36.2% 0.4%

Cow¶ (9913) 96 8,536 1.1% 21,756 39.2% 0.4%
*Total genes in genomes include only those that encode proteins. These numbers were obtained from the databases that contribute annotations to GO and are listed on 
the GO annotations download page (http://www.geneontology.org/GO.current.annotations.shtml). ‡Experimental annotations include those only with the following 
evidence codes: IDA (inferred from direct assay), IEP (inferred from expression pattern), IGI (inferred from genetic interaction), IMP (inferred from mutant phenotype) and 
IPI (inferred from physical interaction). §Percentage annotated is determined by dividing the number of genes annotated by total genes. ||Percentage known in genome is 
determined by multiplying the percentage of experimentally derived annotations by the percentage of the genome annotated. This is an approximation of the extent of 
knowledge about the portion of the genome that encodes proteins in an organism with a complete genome sequence that is captured by annotation. ¶Numbers are from 
the GO annotation project at the European Bioinformatics Institute, human data last updated 14 September 2007, cow data last updated 17 January 2007, chicken data 
last updated 10 July 2007. #Numbers are from The Arabidopsis Information Resource (TAIR), last updated 14 December 2007. **Numbers are based on release 5.4 of the 
Drosophila melanogaster genome and GO annotations from FlyBase release FB2007_03 (dated 11 January 2007). NCBI, National Center for Biotechnology Information.
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to the definition of the term and not to the term name 
or its position in the graph, it is nonetheless vital that 
researchers use the latest versions of the ontology and 
annotations (available at the GO downloads web page), 
and cite the version downloaded, so that their results 
can be reproduced.

Applications using GO annotations
In one of its most common applications, GO is used to 
analyse results from high-throughput studies. These 
studies typically produce sets of genes, and research-
ers often use the GO annotations to determine which 
biological processes, functions, and/or locations are 
significantly over- or under-represented in a group of 
genes, what new gene functions can be inferred on the 
basis of the data, and how the given genes are distributed 
across a pre-defined set of biological categories. Here, we 
discuss approaches to address these issues using GO, as 
well as the pitfalls to be avoided.

Functional profiling — seeing the forest from the trees. In 
many cases, the result of a high-throughput experiment 
is a set of genes that are differentially expressed between 
different conditions (for example, cancerous versus 
healthy). The goal of functional profiling is to determine 
which processes might be different in particular sets of 
genes, a process that is often conducted by determining 
which GO terms are represented differently (for exam-
ple, significantly more or less often than expected by 
chance) within the gene set10–18.

The simplest approach is to calculate ‘enrichment/ 
depletion’ for each GO term (that is, a higher propor-
tion of genes with certain annotations among the dif-
ferentially expressed genes than among all of the genes in  
the study). The main problem here is that any enrichment  
value can occur just by chance. Therefore, enrich-
ment alone should not be interpreted as unequivocal  
evidence implicating the GO term in the phenomenon 
studied without an appropriate statistical test.

More sophisticated approaches calculate the prob-
ability of observing a particular enrichment value just 
by chance using a binomial model. For example, the 
probability of picking a gene annotated to ‘apoptosis’ is 
fixed, and is equal to the proportion of apoptosis genes 
in the reference set (the set of genes under study). Here, 
the binomial distribution provides the probability of 
obtaining a particular proportion of apoptosis genes 
among the differentially expressed genes by chance19. 
This is a good approximation for large reference sets (for 
example, whole-genome microarrays) because the prob-
ability of picking an apoptosis gene from the reference 
set hardly changes after each gene is picked. However, 
once a gene or protein is picked from a smaller reference 
set (for example, an antibody array that might screen 
only hundreds of proteins), the probability that the next 
picked gene is annotated to apoptosis is substantially 
influenced by whether the previously picked genes were 
annotated to apoptosis. Under these circumstances, 
better suited models are the hypergeometric distribu-
tion (a discrete probability distribution that describes 
the number of successes in a sequence of n draws from 
a finite population without replacement)19 or the chi 
squared20 distribution, both of which take into consid-
eration how the probabilities change when a gene is 
picked. More recent approaches perform the analysis 
while considering information about the position of the 
GO terms in the hierarchy21–23.

When applying a statistical test in functional profil-
ing, several things should be considered. First, all of the 
statistical models described above calculate the probabil-
ity of having the observed number of genes annotated 
to a given GO term when a random draw is performed 
from the same reference set. Therefore, it is crucial that 
an appropriate reference set be used. The reference set 
should only include the genes that were monitored in the 
experiment. This is often distinct from the background 
(that is, total) set of genes in a genome, yet many of the 
functional profiling tools use an incorrect reference 
set and hence produce incorrect results. Second, many 
tools only measure enrichment and ignore depleted GO 
terms, which could lead to only partial answers to the 
given biological problem.

Two types of questions can be addressed when per-
forming functional profiling: a hypothesis-generating  
query, such as which GO terms are significant in a 
particular set of genes; or a hypothesis-driven query24, 
such as whether apoptosis is significantly enriched or 
depleted in a particular set of genes. In the hypothesis-
driven query, one can include all of the genes that are 
annotated both directly to apoptosis and indirectly to 
all of its children, and calculate the p‑value, maximizing 
the statistical power because no correction for multiple 
comparisons is required25. The hypothesis-generating 
approach can also be valuable. An unbiased search 
for significant GO associations can be done with a 
bottom-up approach as follows: for every leaf term, 
calculate p‑values with the genes directly associated to 
it. If any term is significant, do not propagate its genes 
above. This would provide the most specific node that 
is significant in that particular branch. If a term is not 

Table 3 | NOT annotations in the gene ontology (GO) database*

Contributing database Number of NOT annotations

CGD 11

Dictybase 76

FlyBase 246

GeneDB_Spombe 83

UniProt 148

AgBase 3

HGNC 41

MGI 217

RGD 21

SGD 88

TAIR 127

ZFIN 37
*As of 12 November 2007. CGD, Candida Genome Database; HGNC, HUGO Gene  
Nomenclature Committee; MGI, Mouse Genome Informatics; RGD, Rat Genome Database; SGD, 
Saccharomyces Genome Database; TAIR, The Arabidopsis Information Resource; ZFIN, Zebrafish 
Information Network.
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significant, propagate the annotations to its parent and 
re-calculate with the parent term. The genes will propa-
gate upwards until a significant node is found or until 
the root is reached. A careful analysis is still necessary 
to properly correct for multiple comparisons.

It is important to correct for the fact that many tests 
performed in parallel will greatly increase the number 
of false positives in the entire set of tests. This is a gen-
eral problem that is not specific to GO. The simplest 
correction, Bonferroni, would multiply the p‑values of 
all terms with the number of parallel tests performed. If 
genes are propagated all the way up, to the root node, the  
number of tests is equal to the number of terms in  
the GO hierarchy — 25,473 in the October 2007 release. 
In practice, a term would need to have a raw p‑value 
less than 4 x 10–7 for it to be significant at the 1% sig-
nificance level. Other corrections, such as Holm’s26 and 
false discovery rate27, are less conservative but loss of 
power cannot be completely avoided (see Refs 28,29 
for further reviews). Hence, as a general rule, one can 
increase the power of the statistical analysis by perform-
ing the fewest possible number of tests. One way to do 
this is to ask specific biological questions by collapsing 
terms in different regions of the GO structure, before 
any p‑values are calculated, on the basis of the biological 
hypotheses tested. Genes are then propagated up to the 
collapsed nodes and the multiple comparison correction 
needs to use only the number of nodes in this custom 
cut of the GO. Most tools that are currently available are 
limited to performing analysis either at a fixed depth or 
with all nodes, thus preventing the customized collaps-
ing of the GO that can improve significance in most 
circumstances.

Another issue stemming from the propagation of 
genes to parent terms is that the parallel tests performed 
for nodes in a given path will be clearly correlated 
because the same genes can appear several times on each 
path. Not all correction methods perform well under 
such circumstances. GO’s structure is important because 
the lack of independence arises from clear inheritance 
phenomena that could be used to decorrelate the analysis 
of various terms21–23.

A thorough comparison of 14 tools, which discusses 
their scope, statistical models, visualization capabilities, 
corrections for multiple comparisons and reference sets, 
is available elsewhere25. Interestingly, submitting the 
same data set to 10 different ontological analysis pro-
grams resulted in p‑values ranging over several orders of 
magnitude for some GO terms (S.D., unpublished obser-
vations). Factors that can cause such wildly different 
results for the same input data include: the method used 
to map gene and sequence identifiers; the sources and 
versions of the annotation files (for example, GOA, GO 
or model organism database); the method of annotation 
propagation (for example, direct annotations only versus 
propagated to parents); the statistical testing method 
(for example, one-sided versus two-sided tests); the  
actual mathematical formula for the calculation; and  
the multiple hypothesis correction method. These  
and other relevant variables should be made explicit in 
software distributions, as well as in reports of the results. 

At the very least, researchers should try a few different 
functional profiling programs before interpreting the 
results of an experiment.

Using GO to predict gene function, and assessing the 
results. The GO is often used to infer gene function 
computationally30–32. Typical approaches tend to be vari-
ations of the same theme: genes are grouped together on 
the basis of some criteria such as similar gene expres-
sion or through a protein–protein interaction network. 
Enrichment of GO terms is detected by methods such as 
those described above, and the uncharacterized genes are 
presumed to be involved in the same biological processes 
as the genes with which they are grouped. Therefore, these 
uncharacterized genes can be putatively associated with 
the enriched GO terms. It is imperative that annotation 
practices are considered when taking this approach (for 
example, the NOT annotations described in the previous 
section). In a similar manner, propagating gene function 
on the basis of annotations that are neither manually 
checked nor experimentally verified (TABLE 1) is likely to 
result in a substantial number of false positives. Also, the 
aspect of the GO ontology (biological process, molecular 
function and cellular component or location) should be 
considered when making inferences about a gene on the 
basis of the GO annotations. For example, inferences that 
are based on correlated gene expression might be reason-
able for the biological process ontology terms, but less 
so for the molecular function and cellular component or 
location terms. Gene functions can also be inferred from 
GO annotations without the need for a prior gene group-
ing, for instance, on the basis of a semantic analysis of the 
gene function association matrix33. This type of analysis 
relies on capturing the implicit dependencies that might 
be present between genes.

Computational studies that analyse high-throughput  
data often benchmark their results to assess their per-
formance. Advantages of using GO for as a tool for 
evaluation include: comprehensiveness, in which GO 
encompasses all cellular biological processes as opposed 
to classification schemes that are specific to a certain 
domain (for example, metabolic pathways) and thus 
should exhibit less bias; manual annotation, which is 
generally thought to be higher quality than computa-
tionally generated annotation; and consistent annotation 
standards across species.

There are some important issues to consider when 
using GO as a tool for evaluation. Consideration of the 
DAG structure of the ontology and the information con-
tent and source of each annotation are crucial to accurate 
benchmarking. For example, computational biologists 
could benchmark their analysis techniques by using 
precision-recall curves; if they happen to use high-level 
GO terms that are so general that most gene products 
are annotated to them from propagations to parent terms 
they would get artificially inflated performance scores. 
Alternatively, if only direct annotations are considered, 
the performance would be artificially poor. One could 
use a particular level of the GO ontology (for example, 
terms that are three levels below the root node), but this is 
problematic because GO’s structure is not uniform in its 
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information content. A better approach is to determine 
the information content of GO terms. One recent paper 
chooses informative terms on the basis of the number of 
gene products annotated to them34 and another uses a 
manually derived set35. Another common issue with using 
GO for benchmarking is that some of the data that is used 
as an input for a particular analysis might also be used as 
a source for GO annotations, which might cause a circu-
larity problem. For instance, an algorithm that predicts 
gene function on the basis of expression data should not 
include GO annotations based on microarray expression 
from those same experimental studies. Evidence codes 
and citations provided with each annotation can be used 
to filter annotations appropriately.

Functional categorization using GO. Another common 
application of GO is to categorize genes on the basis of 
a relatively small set of high-level GO terms. Results  
of the functional categorization are frequently shown 
as pie charts or bar charts (FIG. 2). This involves the 
mapping of a set of annotations for the genes of interest 
to a specified subset of high-level GO terms called a 
GO slim ontology. This is a typical way of providing an 
overview of the broad biology encoded by a genome3,36, 
EST or cDNA collection37,38, or of differential expression 
patterns18,39,40.

Four GO slim ontologies (generic, plant, yeast and 
human) are updated regularly and are available from 
the GO website (see the GO Slim and Subset Guide); 
previously published GO slims are also archived. The 
GO website provides an algorithm, map2slim, to map 
annotations to a slim ontology, which is used by several 
tools (for example, Princeton University’s GO Term 
Mapper. When categorizing using GO, it is important 
to choose (or create) both the GO slim and the binning 
algorithm carefully to generate results that are applicable 
for a particular analysis. A GO slim file should be chosen 
or created on the basis of the type of analysis (that is, the 
specific biological processes and organism of interest).

Regardless of the GO slim chosen, the structure of 
the GO and the nature of the annotations must be con-
sidered. Because the GO is a DAG, a GO term used for 
a specific annotation might be a child of multiple terms 
in the slim set. Also, individual gene products often 
have several annotations to different terms to reflect 
their multiple functions, roles or locations. Because one 
gene’s annotations frequently map to many slim terms, 
pie charts — traditionally used to illustrate functional 
distribution of genes — are not a good representation of 
the data because the sum of the annotations is larger than 
100%, that is, genes are found in more than one slice of 
the pie. Bar charts are more appropriate here (FIG. 2).

Figure 2 | Using gene ontology (GO) to bin the yeast genome into broad biological process categories. This 
example was generated by downloading the go_slim_mapping.tab file from the Saccharomyces genome database ftp 
site (dated 19 January 2008). This file maps every gene in the yeast genome to the yeast GO slim ontology available from 
the GO website. The number of genes (6,200 in total, including RNAs but excluding ‘dubious’ genes) annotated to a 
particular term in the yeast GO slim ontology is indicated on the graph. Dubious genes are those that were originally 
predicted to exist, on the basis of ORF length, but that are now thought to be unlikely to encode an expressed protein, 
on the basis of functional and comparative genomics data. The ‘other’ term is used when genes are annotated to terms 
other than those included in the GO slim ontology, and the ‘biological process’ term, the root node in the biological 
process ontology, indicates that genes annotated to it are not yet characterized. Note that because genes can be 
binned to more than one category, there are more annotations (13,074) than total genes (6,200) with annotations.
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Annotation coverage is also a vital consideration 
when categorizing a gene set from one organism, or when 
categorization of gene sets from different organisms are 
compared (TABLE 2). Taking these caveats together, any GO 
categorization should provide an indication of how many 
genes are not mapped to any slim term, how many genes 
are unknown (that is, mapped directly to the root node), 
and how many genes are unannotated.

Conclusion
Although GO is a powerful tool, researchers who use 
it should be cognizant of the features of the ontologies 
and annotations to avoid common pitfalls. Available  

annotation for a given organism might affect results and 
conclusions. Therefore, care should be taken when choos-
ing an analysis method; it might be essential to include or 
exclude certain types of annotations for certain types of 
analysis. In addition, it is crucial for any analysis to cite data 
sources (including the version of ontology, date of annota-
tion files, numbers and types of annotations used, versions 
and parameters of software, and so on) to ensure that results 
are fully reproducible. The GO is a tool that will become 
increasingly powerful for data analysis and functional 
predictions as the ontologies and annotations continue 
to evolve. Our hope is that researchers fully understand  
and thus can take full advantage of this vital resource.
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