Gene Ontology (GO) Enrichment

In a previous exercise you identified all gene in *Cryptosporidium* species that contain a with the $YXX\Phi$ receptor signal motif:

http://cryptodb.org/cryptodb/im.do?s=928309b4c1b9ef3f

Look at the results for *C. muris*. Are you able to identify types of proteins that are enriched in the list just by looking? How confident are you about your conclusion? To help, you can also click on the graph icon next to the product description column to generate a word cloud of all the words in the product descriptions of your results. Is this statistical?

1	lick on a	number in 1			er your results			
All Results	Ortholog Groups		Apicomplexa				romerida	
			Cryptosporidium			Chromera	Vitrella	
				C.parvum			V.brassicafo	
202	205	TU502	RN66	Iowa II	Unknown strain			155
282	205	81	110	91	0	0	0	
First	1 2 3 4 ! Gene	5 Next La		Adva	nced Paging			Product Description
	CMU_037	790	DS9897	26: 41,920	- 43,329 (+)		h	hypothetical protein, conserved
	CMU_038	090	DS9897	26: 122,94	6 - 124,004 (-)		h	hypothetical protein, conserved
0	CMU_038	180	DS9897	26: 142,78	5 - 144,212 (+)		h	hypothetical protein, word Cloud
	CMU_038 CMU_038				5 - 144,212 (+) 2 - 164,866 (+)			hypothetical protein, Word Cloud
	and an and a state	270	DS9897	26: 163,29			tr	
	CMU_038	270 340	DS9897:	26: 163,29 26: 184,85	2 - 164,866 (+)		tri A	transmembrane amir Word Cloud Data
	CMU_038: CMU_038:	270 340 090	DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35	2 - 164,866 (+) 9 - 189,688 (-)		tri A hy	transmembrane amir Word Cloud Data ABC transporter fam Filter words by rank: 1 to 50
	CMU_038 CMU_038 CMU_039	270 340 090 120	DS98973 DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35 26: 411,04	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-)		tr A hy	transmembrane amir Word Cloud Data ABC transporter fam Filter words by rank: 1 to 50 hypothetical protein Sort by: Rank @A-Z Use skider or enter numbers to adjust filter
	CMU_038 CMU_038 CMU_039 CMU_039	270 340 090 120 130	DS98973 DS98973 DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35 26: 411,04 26: 413,14	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-)		tri A hi hi	transmembrane amin ABC transporter fam hypothetical protein hypothetical protein, hypothetical protein, hypot
	CMU_038 CMU_038 CMU_039 CMU_039 CMU_039	270 340 090 120 130 540	DS98972 DS98972 DS98972 DS98972 DS98972 DS98972	26: 163,29 26: 184,85 26: 401,35 26: 411,04 26: 413,14 26: 506,53	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-) 3 - 416,793 (-)		tr A hy hy hy	transmembrane amin ABC transporter fam hypothetical protein hypothetical protein, hypothetical protein, hypot
	CMU_038 CMU_038 CMU_039 CMU_039 CMU_039 CMU_039	270 340 090 120 130 540 560	DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35 26: 411,04 26: 413,14 26: 506,53 26: 512,23	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-) 3 - 416,793 (-) 5 - 506,903 (+)		tr A hı hı hı hı gg	transmembrane amin ABC transporter fam hypothetical protein hypothetical protein, hypothetical protein, hypot
	CMU_038 CMU_038 CMU_039 CMU_039 CMU_039 CMU_039 CMU_039	270 340 090 120 130 540 560 340	DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35 26: 411,04 26: 413,14 26: 506,53 26: 512,23 26: 923,37	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-) 3 - 416,793 (-) 5 - 506,903 (+) 9 - 513,519 (+)		tr A hy hy hy hy gl	transmembrane amin ABC transporter fam hypothetical protein hypothetical protein, hypothetical protein, hypot
	CMU_038 CMU_038 CMU_039 CMU_039 CMU_039 CMU_039 CMU_039 CMU_039	270 340 090 120 130 5540 560 340 610	DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973 DS98973	26: 163,29 26: 184,85 26: 401,35 26: 411,04 26: 413,14 26: 506,53 26: 512,23 26: 923,37 26: 983,29	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-) 3 - 416,793 (-) 5 - 506,903 (+) 9 - 513,519 (+) 5 - 926,695 (-)		tr A hı hı hı gi gi	transmembrane ami ABC transporter fam hypothetical protein, hypothetical protein, hypot
	CMU_038 CMU_038 CMU_039 CMU_039 CMU_039 CMU_039 CMU_039 CMU_039 CMU_041 CMU_041	270 340 090 120 130 550 560 340 610	DS9897; DS9897; DS9897; DS9897; DS9897; DS9897; DS9897; DS9897; DS9897;	26: 163,29 26: 184,85 26: 401,35 26: 411,04: 26: 413,14 26: 506,53 26: 512,23 26: 923,37 26: 983,29 26: 1,005,5	2 - 164,866 (+) 9 - 189,688 (-) 2 - 406,928 (-) 2 - 412,847 (-) 3 - 416,793 (-) 5 - 506,903 (+) 9 - 513,519 (+) 5 - 926,695 (-) 2 - 984,672 (+)		tr A hy hy hy gl hy gl	transmembrane amin ABC transporter fam hypothetical protein, hypothetical protein, hypothetical protein, Word Cloud Data Sort by: Rank @A-Z Use sider or enter numbers to adjust ther Moute over a word to see its occurrence in the column hypothetical protein, hypothetical protein, hypothetical protein Sort by:: Rank @A-Z Use sider or enter numbers to adjust ther

Enrichment analysis allows you to look for overrepresented features in your results. GO terms provide a structured vocabulary for product descriptions. At EuPathDB we get GO terms from the official annotation and by transferring GO terms associated with InterPro domains (using InterPro scan).

Here are some useful links with additional information:

http://geneontology.org/page/documentation

http://geneontology.org/page/go-enrichment-analysis

To run a GO enrichment analysis, click on the "Analyze Results" tab then click on the GO enrichment option:

\rightarrow	GO		kinase phosphatase exported membrane	
	Gene Ontology Enrichment	Metabolic Pathway Enrichment	Word Enrichment	
	Gene Ontology Enrichment	Metabolic Pathway Enrichment	Word Enrichment	

Next select "the cellular component" option and submit your analysis:

ene Results Genome View Gene Ontology Enrichment S	Analyze Results	BETA	[Rename This Analysis Copy These Parameter Valu
	Gene Ontol	ogy Enrichment	
ind Gene Ontology terms that are enriched in your gene result. Read More	e		
• Parameters			
Organis	sm 🕑	Cryptosporidium muris RN66	0
Ontolog	ענ 🥹	Cellular Component Molecular Function Biological Process	←
GO Ass	ociation Sources	Select all Clear all InterPro predictions Annotation Center	
P-Value	Cutoff (0 - 1.0) 📀	0.05	
	S	ubmit	

Examine your results. Do they make sense?

Gene Results	Genome View Gene Ontology E	nrichment 🛚 🛛 🗛	nalyze Results						
Gene Ontology Enrichment [Rename This Analysis Copy These Parameter Values Find Gene Ontology terms that are enriched in your gene result. Read More Parameters 									
\$ GO ID	GO Term	Genes in the bkgd with this term	Genes in your result with this term	 Percent of bkgd Genes in your result 	Fold enrichment		P- value	Benjamini	Bonferroni
GO:0016020	membrane	271	25	9.2	4.37	8.8	1.76e-11	1.94e-10	1.94e-10
GO:0031224	intrinsic to membrane	121	18	14.9	7.05	11.23	3.82e-11	2.10e-10	4.20e-10
30:0016021	integral to membrane	119	17	14.3	6.77	10.4	2.90e-10	1.06e-9	3.19e-9
30:0044425	membrane part	177	18	10.2	4.82	7.46	1.18e-8	3.25e-8	1.30e-7
O:0005575	cellular_component	870	30	3.4	1.63	2.99	4.14e-4	9.10e-4	4.55e-3
GO:0005789	endoplasmic reticulum membrane	13	3	23.1	10.93	11.66	3.83e-3	6.02e-3	4.21e-2
GO:0042175	nuclear outer membrane-endoplasmic reticulum membrane network	13	3	23.1	10.93	11.66	3.83e-3	6.02e-3	4.21e-2
30:0044432	endoplasmic reticulum part	14	3	21.4	10.15	10.82	4.58e-3	6.30e-3	5.04e-2
GO:0005783	endoplasmic reticulum	18	3	16.7	7.89	8.4	8.46e-3	1.03e-2	9.31e-2
GO:0012505	endomembrane system	33	3	9.1	4.31	4.55	3.66e-2	4.03e-2	4.03e-1
20.0024000	organelle membrane	37	3	8.1	3.84	4.05	4.79e-2	4.79e-2	5.27e-1

Some more info on Fischer's exact test: http://udel.edu/~mcdonald/statfishers.html

Some more info about Odds rations: <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/</u>

Some more info on false discovery rates and P value correction: http://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values/