Functional Genomics in EuPathDB Transcriptomics and Proteomics Exercise 13

1. Exploring RNA sequence data in *Plasmodium falciparum*. Note: For this exercise use <u>http://www.plasmodb.org</u>

a. Find all genes in *P. falciparum* that are upregulated based on RNA-seq data at late time points (30, 35 and 40-hours) compared to early time points in this experiment (1, 10, 15, 20, 25 hrs). *Hint*: for this exercise use a fold change search based on the "Transcriptome during intraerythrocytic development (Bartfai *et al.*)" experiment.

	Identify Genes based on RNA Seq Evidence
Identify Genes by:	Filer Data Sets: Type keyword(s) to filter Legend: FO Fold Change FOOV Fold Change P Percentile
Expand All Collapse All Text, IDs, Organism Genomic Position Protein Attributes Protein Attributes Similarity/Pattern Transcript Expression EST Evidence SAGE Tag Evidence Microarray Evidence RNA Seq Evidence ChIP on Chip Evidence TF Binding Site Evidence Protein Expression Cellular Location Putative Function Evolution Population Biology	• Organism • Data Set • Idiciparum 3D7 • Transcriptome during intraerythrocytic development (Barflai et al.) • Raiciparum 3D7 • Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragen et al.) • Raiciparum 3D7 • Strand specific transcriptomes of 4 life cycle stages (Lopez-Barragen et al.) • Raiciparum 3D7 • NSR-seq Transcriptomes of 4 life cycle stages (Lopez-Barragen et al.) • Raiciparum 3D7 • NSR-seq Transcriptomes of 4 life cycle stages (Lopez-Barr gan et al.) • Raiciparum 3D7 • NSR-seq Transcriptomes of 4 life cycle stages (Lopez-Barr gan et al.) • Raiciparum 3D7 • NSR-seq Transcriptomes of 4 life cycle stages (Lopez-Barr gan et al.) • Row P • Pod Change Volt Name • Pod Ovne regulated • Pod Volt Name • Pod Change Volt Name • Pod Ovne regulated • Pod Volt Name • Pod Ovne regulated • Pod Volt Name • Pod Ovne regulat
	This graphic will help you visualize the parameter choices you make at the left. It will begin to display when you choose a Reference Sample or a Comparison Sample. Hour 25 Hour 25 See the detailed help for this search.
	Advanced Parameters
	Get Answer

Hint: there are a number of parameters to manipulate in this search. As you modify parameters on the left side note the dynamic help on the right side:

Fold Change Fold Change with pValue Percentile	
Identify Genes based on P.f. post infe change)	ection (RBC) RNA-seq time series (fold Tutorial
For the Experiment Post-Infection (RBC) RNA-Seq time Series () return protein coding () () Genes that are up-regulated () () with a Fold change >= 12 () between each gene's average () expression value () in the following Reference Samples () () Hour 5 () Hour 10 () Hour 15 () Hour 20 () Hour 25 () Hour 30 select all clear all () and its average () expression value () in the following Comparison Samples () () Hour 15 () Hour 25 () Hour 25 () Hour 35 () Hour 35 () Hour 40 select all clear all ()	Example showing one gene that would meet search criteria. (Dots represent this gene's expression values for selected samples) Image: Comparison of the search criteria of the selected samples of the selected selected samples of the selected selected samples of the selected samples of the selected selected samples of the selected selected samples of the selected s
⊞ Advance	ad Parameters
Get	Answer

Direction: the direction of change in expression. Choose up-regulated.

Reference Sample: the samples that will serve as the reference when comparing expression between samples. choose 5, 10, 15, 20, 25

Operation Applied to Reference Samples: fold change is calculated as the ratio of two values (expression in reference)/(expression in comparison). When you choose multiple samples to serve as reference, we generate one number for the fold change calculation by using the minimum, maximum, or average. Choose average

Comparison Sample: the sample that you are comparing to the reference. In this case you are interested in genes that are up-regulated in later time points choose 30, 35, 40

Operation Applied to Comparison Samples: see explanation above. Choose average

Fold Change>=: the intensity of difference in expression needed before a gene is returned by the search. Choose 12 but feel free to modify this.

b. For the genes returned by the search, how does the RNA-sequence data compare to microarray data? (*Hint*: add the column called "Pf-iRBC 48hr - Graph" and compare the RNA-seq to the microarray graphs).

- c. Which gene has 16 exons? (*Hint*: add a column for number of exons)
- d. Is this gene alternatively spliced? Look at the gene page. Take note of the Gene ID.
- e. View this gene in the genome browser and load the RNA-seq tracks for this experiment "P.f. mRNAseq Transcriptome during intraerythrocytic development Coverage (Bartfai *et al.*)". Do these tracks match the results you got above? (ie. is this gene differentially regulated between the early time points and the late ones?)
- f. Do you agree with the alternative splice call? Are there other possible splice variants? (*Hint*: turn on the track called "Splice Site Junctions (Union of All Experiments)").
- g. What other data type can you load to help in looking at gene structure? (*Hint*: Look in the transcript expression section of the gbrowse tracks... how about ESTs).

3. Exploring microarray data in TriTrypDB. Note: For this exercise use <u>http://www.tritrypdb.org</u>

Find T. cruzi genes that are upregulated in amastigotes compared to trypomastigotes. Go to the transcript expression section then select microarray.

Identify Genes by:	▲ Organism	≎ Data Set	Choose a sear
factory concerest,	L. infantum JPCM5	Expression profiling of the promastigote time-course (L.d. Samples) (Peter Myler)	FC
Expand All I Collapse All	L. infantum JPCM5	axenic and intracellular amastigote profiles (Barbara Papadopoulou)	
Text, IDs, Organism	L. major strain Friedlin	Three Developmental Stages (Stephen M. Beverley)	
Genomic Position	T. brucei TREU927	 Dynamic mRNA Expression analysis of cells undergoing synchronous life-cycle differentiation (Keith R. Matthews) 	FC
Gene Attributes	T. brucei TREU927	Expression profiling of five life cycle stages (Marilyn Parsons)	FC
Protein Attributes	T. brucei TREU927	Procyclic TbDRBD3 Depletion (Antonio Estevez)	DC
Protein Features	T. brucei TREU927	Expression profiling of in vitro differentiation time series (Christine Clayton)	FC
Similarity/Pattern	T. brucei TREU927	induced DHH1 in wild type and DEAD:DQAD mutant (Mark Carrington)	
Transcript Expression	T. brucei TREU927	Procyclic trypanosomes treated with heat shock (Mark Carrington)	DC
EST Evidence	T. cruzi CL Brener Esmeraldo- like	Life-Cycle Stages (Rick Tarleton)	FC
SAGE Tag Evidence			
Microarray Evidence			
RNA Seq Evidence			
Protein Expression			
Cellular Location			
Putative Function			
Evolution			
Bopulation Biology			
Population Biology			

- Select the direction of regulation, your reference sample and your comparison sample. For the fold change keep the default value 2.

- How many genes did you find? Do the results seem plausible?
- Are any of these genes also upreglated in the replicative insect stage (epimastigotes)? How can you find this out? (*Hint*: add a step and run a microarray search comparing expression of (Genes)

epimastigotes to metacyclics).

 Do these genes have orthologs in other kinetoplastids? (*Hint*: add a step and run and ortholog transform on your results).

- How many ortholgs exist in *L. braziliensis*? (*Hint*: look at the filter table right above your results. Click on the number in of gene to view results from a specific species).

My Str	ategie	s: Ne	w C	pened	(1)	All (3)	💮 Bask	et Exa	amples	Help									
(Genes)																Strate	egy: life cy	cle (fc,)* 🛛 🔀
[±] <u>life cy</u> 147 (Ste	r <u>cle (fc)</u> Genes ep 1	Life cyr 223 c 42 G Ste	cle (fc) Genes enes ep 2) • •	rtholog 5 Genes Step 3	<u>s</u>	Add Ste											D	Rename uplicate Save As Share Delete
55 Gen Strateg	ies fro i gy: <i>life</i> er results	m Step 3 cycle (fc by species) (results r	removed by	/ the filte	er will not be	combined in	to the next ste	ap.)						Add 55 G	enes to Ba	asket Do	wnloa	d 55 Genes
A11 (Ortholog			Leishm	ania				Trypanoso	ma bruce	i	Tarpanasama			Trypanosoma	cruzi			Taraanaaama
Results	Groups	braziliensis (donovani	infantum	major	mexicana	tarentolae	Distinct genes	TREU927	strain 427	gambiense	congolense	Distinct genes	esmeraldo	non-esmeraldo	unassigned	marinkellei	Sylvio	vivax
1523	37	55	52	57	59	56	59	38	38	36	36	27	1017	330	316	194	94	83	31
Gene I	Results	Genom	e View	Advance	d Pagir	na												Add	Columns
					aragn		-	•					-	A Orthu		lavalog o		rtholo	
	Sene ID	📮 Orga	nism 🥹	Ţ	Geno	mic Loca	tion 🥹	Produc	t Descrip	otion 🥹	∎ =	Input Orthol	og(s) 🥹	Grou	p 🎱 📮	ount) 💼 🚔 🖁	ount	^y 😀 🚹
🕀 Lbri	M.02.035	0 L. brazili MHOM/E	iensis BR/75/Mi	Lb 2904 14	rM.02: 7,781	- 154,645	(-)	ABC1 trans	sporter, pu	itative		TcCLB.5101	49.80	OG5_12	6568	8		7	6
👚 Lbri	M.11.096	0 L. brazili MHOM/E	iensis BR/75/M	Lb 2904 43	rM.11: 9,107	- 444,425	(+)	ABC transp	oorter, puta	ative		TcCLB.5101	49.80	OG5_12	6568	8		7	6
🗇 Lbri	M.11.100	0 L. brazili MHOM/E	iensis BR/75/Mi	Lb 2904 45	rM.11: 8,406	- 464,144	(+)	ABC1 trans	sporter, pu	tative		TcCLB.5101	49.80	OG5_12	6568	8		7	6
🗇 Lbri	M.11.101	0 L. brazili MHOM/E	iensis BR/75/Mi	Lb 2904 47	rM.11: 0,736	- 476,186	(+)	ABC1 trans	sporter, pu	itative		TcCLB.5101	49.80	OG5_12	6568	8		7	6
🗠 I bri	M 11 100	0 brozili	ioneie	Lb	-M 11-			ABC traper	orter put	otivo		TeCI B 5101	10 80	005 12	6568	R		7	e

- Explore your results. Did you find anything interesting?
- 4. Finding genes based on RNAseq evidence and inferring function of hypothetical genes.

Note: Use http://plasmodb.org for this exercise.

a. Find all genes in *P. falciparum* that are upregulated at least 50-fold in ookinetes compared to other stages: "Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragan et al.)"

Evened All L Colleges All	 Organism 	≎ Data Set	Choose a search
Text, IDs, Organism	P. falciparum 3D7	Transcriptome during intraerythrocytic development (Bartfai et al.)	FC FCpV P
H Genomic Position	P. falciparum 3D7	Transcriptomes of 7 sexual and asexual life stages (Lopez-Barragan et al.)	FC FCpV P
Gene Attributes	P. falciparum 3D7	Strand specific transcriptomes of 4 life cycle stages (Lopez-Barragan et al.)	FC P
Protein Attributes	P. falciparum 3D7	NSR-seq Transcript Profiling of malaria-infected pregnant women and children (Vignali et al.)	FC FCpV P
 Protein Features 	P. falciparum 3D7	Revise Step 2 : P.f. seven stages - RNA Seq (percentile)	
	P. yoelii yoelii 17XNL	Experiment Ø o percentile - P. falciparum Su Seven Stag	es RNA Seq data
EST Evidence SAGE Tag Evidence Microarray Evidence RNA Seq Evidence ChIP on Chip Evidence TF Binding Site Evidence Protein Expression Cellular Location Putative Function Evolution Population Biology		Samples V King V Ring V Early Trophozoite V Late Trophozoite V Schizont V Gametocyte II V Gametocyte V Ockinete select all clear all Minimum expression percentile V Dokinete select all clear all V Auximum expression percentile V So Maximum expression percentile V So Matches Any or All Selected Samples? V Any t Protein Coding Only: V Ves t	
		Advanced Parameters	
		Combine Genes in Step 1 with Genes in Step 2:	
		🔾 🔘 🕺 1 Intersect 2 💿 🔘 1 Minus 2	

- b. The above search will give you all genes that are upregulated by 50 fold in ookinetes compared to the other stages. However, this does not mean that these genes are not expressed in the other stages. How can you remove genes form the list that are likely not expressed in the other stages? (*hint: run a search for genes based on RNAseq evidence from the same experiment, but this time select the percentile search*): P.f. seven stages RNA Seq (percentile)
- c. Which metabolic pathways are represented in this gene list? (*hint:* transform results to metabolic pathways.

(Pathway)	Strategy:	P.f. seven stages	(fc) *	
P.f. seven S 4187 Genes 568 Genes 52 Genes Step 1 Step 2 Add Step			Rename Duplicate Save As Share Delete	

- 5. Finding genes that are essential in procyclics but not in blood form *T. brucei*. Note: for this exercise use <u>http://TriTrypDB.org</u>.
 - Find the query for high throughput Phenotyping.

	Identify Genes by:		
88	Expand All Collapse All Text, IDs, Organism	Identify Genes bas	ed on High-Throughput Phenotyping
	Genomic Position Gene Attributes	Experiment 🕖	Quantitated from the CDS Sequence Quantitated from gene model (5 prime UTR + CDS)
	Protein Features	Direction 📀	Decrease in coverage \$
	Similarity/Pattern	Reference Sample(s) 🥝	Uninduced sample
H	Transcript Expression	Comparison Sample(s) 😵	Induced bloodstream form (day 3)
	Protein Expression		Induced bloodstream form (day 6)
	Cellular Location		Induced procyclics
	Putative Function		DIF (induced throughout growth) form ¹
	GO Term EC Number Phenotype	fold difference 📀	1.5
	High-Throughput Phenotyping	P value less than or equal to 😵	1E-6
	Evolution	Apply to Any or All Selected Samples? 🕖	any +
8	Population Biology	Protein Coding Only: 🔮	yes ‡
	•		

- Think about how to set up this query. (*hint*: you will have to setup a two step strategy).
- Remember you can play around with the parameters but there is no one correct way of setting them up try the default parameters first and select the "induced procyclics" as the comparison sample.

Identify Gene	es bas	ed on	High-	Throughp	ut Phe	enotypin	g				
Expe	eriment 🕐	 Quantitat Quantitat 	ed from the ed from ger	CDS Sequence le model (5 prime UT	R + CDS)						
Di	irection 🔞	Decrease in	coverage	\$							
Reference Sar	mple(s) 🕜	Uninduce	d sample								
Comparison Sar	mple(s) 😵	Induced I Induced I Induced I DIF (indu select all cl	bloodstream bloodstream procyclics iced through ear all	n form (day 3) n form (day 6) nout growth) form¹							
fold diff	ference 🕐	1.5									
P value less than or e	equal to 🔞	1E-6									
Apply to Any or All Selected Sar	mples? 😢	any ‡									
Protein Coding	ıg Only: 🕐	yes ‡							- ↓		
	My Stra	tegies:	New	Opened (1)	All (1)	合 Basket	Examples	Help			
	(Genes) ^t <u>T.b. RN</u> <u>1529 G</u> Step	IAi fc enes	Add Step						Strategy:	T.b. RNAi fc * Rena Duplic Save Sh Dei	ime iate As iare lete

- Next add a step and run the same search except this time select the "induced bloodstream form" samples.
- How did you combine the results? Remember you want to find genes that are essential in procyclics and not in blood form.

Add Step 2 : High-Throughput Pl	nenotyping			
Experiment @ Direction @ Reference Sample(s) @ Comparison Sample(s) @	Quantitated from the CDS Sequence Quantitated from gene model (5 prime UTR + Cl Decrease in coverage + Uninduced sample Induced bloodstream form (day 3) Induced bloodstream form (day 6) Induced procyclics DIF (induced throughout growth) form' select all clear all	DS)		
fold difference 🕢	1.5			
P value less than or equal to 🚷	1E-6			
Apply to Any or All Selected Samples? 😯	any 🗧		T.b. RNAi fc	
Protein Coding Only: 📀	yes 🗧		2744 Genes	
+ Advanced	Parameters	Th PNAife		
Combine Genes in Step 1 with G	enes in Step 2:	1529 Genes	570 Genes	Add Step
O 🚺 1 Intersect 2	① ① ① 1 Minus 2	Step 1	Step 2	
① ① 1 Union 2	2 Minus 1			
□ 📙 1 Relative to 2 , u	ising genomic colocation			

Run Step

6. Exploring Expression Quantitative Trait Locus (eQTL) data in PlasmoDB.

Genetic crosses were instrumental in implicating the PfCRT gene in chloroquine resistance. PlasmoDB contains expression quantitative trait locus data from Gonzales *et. al.* PLoS Biol 6(9): e238. The trait that was examined in this study was gene expression using microarray experiments.

a. Go to the gene page for the gene with the ID PF3D7_0630200. Can you identify the genomic region (haplotype block) that is "most" associated with this gene, ie. has the highest LOD score? (Hint: examine the table called "Regions/Spans associated by eQTL experiment on HB3 x DD2 progeny" on the gene page.

Haplotype Block	Genomic Segment (Liberal)	Genomic Segment (Conservative)	LOD Score (opens a haplotype plot)	Search for Genes (Liberal by Default)	Search for Genes (Liberal by Defau
Pf3D7_05_v3_68.8	Pf3D7_05_v3:1010972-1040241	Pf3D7_05_v3:1018620-1018825	4.94	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_68.8	Pf3D7_05_v3:959929-1010786	Pf3D7_05_v3:1007897-1008018	4.94	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_65.9	Pf3D7_05_v3:870388-1007896	Pf3D7_05_v3:918503-959928	4.9	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_25.8	Pf3D7_05_v3:389050-493947	Pf3D7_05_v3:398963-405946	3.29	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_48.7	Pf3D7_05_v3:683733-732922	Pf3D7_05_v3:686437-693079	3.2	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_45.8	Pf3D7_05_v3:628981-686436	Pf3D7_05_v3:683548-683732	3.2	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_42.9	Pf3D7_05_v3:555274-683547	Pf3D7_05_v3:628753-628980	3.2	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_31.5	Pf3D7_05_v3:405947-628752	Pf3D7_05_v3:493948-555273	2.99	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_20	Pf3D7_05_v3:260855-355367	Pf3D7_05_v3:304284-325885	2.87	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_22.9	Pf3D7_05_v3:325886-398962	Pf3D7_05_v3:355368-389049	2.81	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_60.2	Pf3D7_05_v3:770125-918502	Pf3D7_05_v3:814427-870387	2.18	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_54.4	Pf3D7_05_v3:693080-769886	Pf3D7_05_v3:732923-733046	2.15	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_11.4	Pf3D7_05_v3:252443-304283	Pf3D7_05_v3:260710-260854	2.14	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_5.7	Pf3D7_05_v3:166792-260709	Pf3D7_05_v3:225881-252442	2.13	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_08_v3_57.5	Pf3D7_08_v3:408724-684033	Pf3D7_08_v3:570281-647334	2.11	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_28.9	Pf3D7_07_v3:496401-694858	Pf3D7_07_v3:611138-611341	1.98	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_57.3	Pf3D7_05_v3:733047-814426	Pf3D7_05_v3:769887-770124	1.98	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_08_v3_40.3	Pf3D7_08_v3:768381-783997	Pf3D7_08_v3:768494-768653	1.97	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_20.2	Pf3D7_07_v3:391071-427528	Pf3D7_07_v3:392209-425264	1.79	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_17.3	Pf3D7_07_v3:371129-392208	Pf3D7_07_v3:377646-391070	1.69	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_0	Pf3D7_05_v3:86612-225880	Pf3D7_05_v3:140933-166791	1.67	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_26	Pf3D7_07_v3:451719-611137	Pf3D7_07_v3:463358-496400	1.65	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_08_v3_91.8	Pf3D7_08_v3:1-230964	Pf3D7_08_v3:122068-122241	1.64	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_23.1	Pf3D7_07_v3:425265-463357	Pf3D7_07_v3:427529-451718	1.64	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_08_v3_48.9	Pf3D7_08_v3:647335-751204	Pf3D7_08_v3:684034-725296	1.6	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_07_v3_14.4	Pf3D7_07_v3:358161-377645	Pf3D7_07_v3:370990-371128	1.57	Genes Contained in this Region	Genes Associated to this Region
Pf3D7_05_v3_83.1	Pf3D7_05_v3:1018826-1095899	Pf3D7_05_v3:1040242-1045759	1.53	Genes Contained in this Region	Genes Associated to this Region

b. What kinds of genes do you find in this region? Click on the first link in the column "Genomic segment (liberal)". Now examine the gene table on the genomic segment page.

ies Hide				
Gene ID	Start	End	Strand	Product Description
PF3D7_0523000	957890	962149	forward	multidrug resistance protein (MDR1)
PF3D7_0523100	963227	965044	reverse	mitochondrial processing peptidase alpha subunit, putative
PF3D7_0523200	966123	969737	forward	conserved Plasmodium protein, unknown function
PF3D7_0523300	970266	970962	reverse	conserved Plasmodium protein, unknown function
PF3D7_0523400	973518	975876	forward	DnaJ protein, putative
PF3D7_0523500	976690	977815	reverse	outer arm dynein Ic3, putative
PF3D7_0523600	978665	979870	forward	conserved Plasmodium protein, unknown function
PF3D7_0523700	980754	985354	reverse	conserved Plasmodium membrane protein, unknown functio
PF3D7_0523800	990005	992059	forward	transporter, putative
PF3D7_0523900	993433	994607	reverse	conserved Plasmodium membrane protein, unknown functio
PF3D7_0524000	998753	1002124	forward	karyopherin beta (KASbeta)
PF3D7_0524100	1004237	1008108	forward	conserved Plasmodium protein, unknown function
PF3D7_0524200	1008636	1009404	reverse	conserved Plasmodium membrane protein, unknown functio

- c. What other genes are associated with this block? (Hint: go back to the gene page eQTL table, and click the "genes associated with this region" link. Run the search on the next page and examine the list of genes. It might be useful to sort this list based on the LOD scores.)
- 7. Finding oocyst expressed genes in *T. gondii* based on microarray evidence. Note: For this exercise use <u>http://toxodb.org</u>

a. Find genes that are expressed at 10 fold higher levels in one of the oocyst stages than in any other stage in the "Expression Profiling of *T. gondii* Oocyst, Tachyzoite, Bradyzoite stages (John Boothroyd)" microarray experiment.

Identify Genes by:		
Expand All Collapse All Text, IDs, Organism Genomic Position Gene Attributes	Identify Genes based on Microarray Evidence Filter Data Sets: Type keyword(s) to filter Legend: FO Fold Change FOC Fold Change wit P Percentile	s Similarity
Protein Attributes	A Organism	Choose a search
Protein Features Similarity/Pattern	T. gondii ME49 0 Differential Expression Profiling GCN5-A mutant (William Sullivan)	FC FCC P
Transcript Expression	T. gondii ME49 0 Bradyzoite Differentiation (Multiple 6-hr time points and Extended time series) (Paul H. Davis)	FC P
EST Evidence	T. gondii ME49 0 Expression profiling of the 3 archetypal T. gondii lineages (David S. Roos)	FCC P
Microarray Evidence	T. gondii ME49 0 Transcript Profiling Infection (Vern B. Carruthers)	FC FCC P
Chill on Chin Evidence	T. gondii ME49 0 Mutants and wild-type during bradyzoite differentiation in vitro (Mariana Matrajt)	FC FCC P
Protein Expression	T. gondii ME49 🛛 Ø Bradyzoite Differentiation (Single Time-Point) (Michael W White)	Р
Cellular Location	T. gondii ME49	FC P S
Putative Function Evolution	T. gondii ME49 • Expression Profiling of occyst, tachyzoite, and bradyzoite development in strain M4 (John Boothroyd)	FC P
Population Biology		

In this example the <u>maximum</u> expression value between genes in the reference and comparison groups was used to determine the fold difference.

Identify Genes based on T.g. Life Cycle Stages (fold change) Tutorial									
For the Experiment Occyst, Tachyzoite and Bradyzoite Development ÷	Example showing one gene that would meet search criteria								
that are up-regulated : 0	Up-regulated								
with a Fold change >= 10 between each gene's [maximum :] expression value in the following [Reference Samples] unsportulated 10 days sporulated 2 days in vitro 2 days in vitro 2 days in vitro 2 days in vitro select all clear all	Maximum Comparison								
and its maximum : expression value@ In the following Comparison Samples Unsportulated Unsportulated 2 days in vitro 4 days sin vitro 4 days in vitro 2 days in vitro 2 days in vitro 2 days in vitro 4 days in vitro 2 days in vitro 4 days in vitro 2 days in vitro 4 days in vitro	You are searching for genes that are up-regulated between at least two reference samples and at least two comparison samples. For each gene, the search calculates: fold change = maximum expression value in reference samples maximum expression value in reference samples the average or minimum comparison value. See the detailed help for this search.								
Advanced Parameters									
Get	Answer								

- b. <u>Add a step</u> to limit this set of genes to only those for which all the non-oocyst stages are expressed below 50th percentile ... ie likely not expressed at those stages.
 - *Hint*: after you click on add step find the same experiment under microarray expression and chose the percentile search.
 - Select the 4 non-oocyst samples.
 - We want all to have less than 50th percentile so set *minimum percentile* to 0 and *maximum percentile* to 50.
 - Since we want all of them to be in this range, choose ALL in the "Matches Any or All Selected Samples".
 - Note: you can turn on the columns called "Tg-M4 Life Cycle Stages – graph" and "Tg-M4 Life Cycle Stage %ile- graph" to view the graphs in the final result table.

- c. Revise the first step of this strategy and compare the <u>maximum</u> expression of the reference samples to the <u>minimum</u> of the comparison samples.
 - Does this result look cleaner/more convincing? Why?
 - Would you consider these genes to be oocyst specific?
 - Save this strategy as we'll use this strategy for an exercise we are doing later during the course.

- d. Revise the first step of this strategy to find genes that are 3 fold higher in day 4 oocysts than any other life cycle stage in this experiment.
 - Do all these genes have day 4 oocysts as the global maximum time point?
 - Note that we still have the step to limit the percentile of non-oocyst samples to <= 50th percentile. What happens if you revise this step to also include the unsporulated and day 10 oocyst samples in this percentile range? Do you get more of fewer results back? Why?

My Strategies:	New Opened (1)	All (1)	Basket	Examples	Help								
(Genes) Tg LCStage fo 67 Genes Step 1	LCStage %tile 1920 Genes 4 Genes Step 2	tep						Strategy: Tg LCStage fc * Rename Deplicate Save As Save As Delete					
4 Genes from Step 2 Strategy: Tg LCStage fc T Filter by strains or strain (results removed by the filter will not be combined into the next step.) F Filter by strains (devanced) (results removed by the filter will not be combined into the next step.) Gene Results Genome View													
Advanced	Paging Gene Group (represe	ntative o	Commin	Lauration ()		A December 10 and the second section of the second	Ta-M4 Life Cuele Stages - graph @	Add Columns					
	▼ gene)	100	TGME49 chr	A/lib:		thorty kinese family protein ROP31							
TGME49_233300	TGGT1_233	800	3,177,133 - 3,	178,728 (+)		(ROP31) RhoGAP domain-containing protein		Preside WHMP_DIADO					
			2,009,023 - 2,	,511,080 (-)									

8. Comparing RNA abundance and Protein abundance data. Note: for this exercise use <u>http://TriTrypDB.org</u>.

In this exercise we want to compare the list of genes that show differential RNA abundance levels between procyclic and blood form stages in *T. brucei* with the list of genes that show differential protein abundance in these same stages.

a. Go to the genes by microarray expression and select the fold change search for the "Expression profiling of five life cycle stages (Marilyn Parsons)" experiment.

Identify Genes by:	Identify Genes based on Microarray Evidence											
Expand All Collapse All Text, IDs, Organism Genomic Position	Filter Data Sets: Type keyword(s)	o filter Legend: DC Direct Comparison FC Fold Change P Percentile										
Gene Attributes	 Organism 	≎ Data Set	Choose a search									
B Protein Attributes	L. infantum JPCM5	Expression profiling of the promastigote time-course (L.d. Samples) (Peter Myler)	FC P									
Protein Features	L. infantum JPCM5	Р										
Bimilarity/Pattern	L. major strain Friedlin	L. major strain Friedlin Orhree Developmental Stages (Stephen M. Beverley)										
EST Evidence	T. brucei TREU927	 Dynamic mRNA Expression analysis of cells undergoing synchronous life-cycle differentiation (Kelth R. Matthews) 	FC P									
Microarray Evidence	T. brucei TREU927	Expression profiling of five life cycle stages (Marilyn Parsons)	FC P									
Russe, Eddanos	T. brucei TREU927	Procyclic TbDRBD3 Depletion (Antonio Estevez)	DC									
Protein Expression	T. brucei TREU927	Expression profiling of in vitro differentiation time series (Christine Clayton)	FC									
Cellular Location	T. brucei TREU927	induced DHH1 in wild type and DEAD:DQAD mutant (Mark Carrington)	Р									
Function Evolution	T. brucei TREU927	Procyclic trypanosomes treated with heat shock (Mark Carrington)	DC P									
Population Biology	<i>T. cruzi</i> CL Brener Esmeraldo- like	Life-Cycle Stages (Rick Tarleton)	FC P									

Configure the search to return protein-coding genes that are down-regulated 2 fold in procyclic form (PCF) (I chose both log and Stat and averaged them) relative to the Blood Form reference sample.

b. Add a step to compare with quantitative protein expression. Select protein expression then "Quantitative Mass Spec Evidence". Configure this search to return genes that are downregulated in procyclic form relative to Blood form.

c. How many genes are in the intersection? Does this make sense? Make certain that you set the directions correctly.

	Add Step											
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight	Genes Genomic Segmen SNPs ORFs	S	Text, IDs, Organism Genomic Position Gene Attributes Protein Features Similarity/Pattern Transcript Expression Protein Expression Cellular Location Putative Function Evolution Population Biology	*****	Mass Spec. Evidence Quantitative Mass Spec. Evidence							

- d. Try changing directions and compare up-regulated genes/proteins. (*hint, revise the existing strategy ... you might want to duplicate it so you can keep both*). When you change one of the steps but not the other do you have any genes in the intersection? Why might this be??
- e. Can you think of ways to provide more confidence (or cast a broader net) in the microarray step? (*hint: you could insert steps to restrict based on percentile or add a RNASequencing step that has the same samples*).
- 9. Finding all genes with mass spec evidence in *T. cruzi*. Note: for this exercise use http://TriTrypDB.org.
- a. How many genes in *T. cruzi* have mass spec evidence?
- b. How many genes from the results in a. have at least 10 unique peptide hits? (*hint*: try revising the step in 'a' and change the "minimum number of unique peptide sequences" option to 10.

My Strategies:	New Opener	All (2) O Basket	Examples Help			
(Genes) (Ge	Experiment/Sa	Revise Rev	Anss Spec Froteme of Loruzi C. Bren beome of Loruzi C. Bren beome fronter, Proteome, Sme fronter, Proteome, Sme fronter, Proteome, Sme fronter, Protectione,	iner epimastigotes raldo-like, Proteome, tido-like, Proteome, astigote, esti	Strat	egy: Mass Spec * 🐼 Rename Duplicate Save As Share Delete
			Experiment/Samples (select all clear all expr Leishmania Trypanosoma Trypanosona Trypanoson Trypanoson Iclear all clear all expr 	and all collapse all reset to default na brucei na cruzi and all collapse all reset to default	
		Ur Mini	Minimum Number nique Peptide Sequences mum Number of Spectra	0 1		
	Minimum Nun Unique Peptide Sequ Minimum Number of S	nonesmeraldo-like, reservosome (B1M), membrane (B1M), like, reservosome n uences Spectra : 1	trypsin and endoproleinase dig nonesmeraldo-like, trypsin diges farener, reservosome membrane nembrane (B1M), nonesmeraldo	seited, intact ted, reservosome (B1M), esmeraldo- -like		

c. Can you expand the list of results in 'b' to include possible orthologs/paralogs in *T. cruzi*?

Hint: you will have to use the ortholog transform option when adding a step and select only *T. cruzi*. Explore the columns in your result set.

My Stra	ategie	s: N	New O	pened	(1)	All (2)	Basket	Exan	nples	Help										
(Genes)																St	ategy:	Mass Spe	ec *	
Mass Spec Orthologs Add Step Mass Spec Orthologs 3124 Genes Step 1 Step 2																				
3124 Genes from Step 2 Strategy: Mass Spec Strategy: Mass Spec Add 3124 Genes to Basket Download 3124 Genes □ ▼ Filter results by species (results removed by the filter will not be combined into the next step.)																				
	Ortholog			Leish	mania				Trypanoso	oma bru	cei			Trypanos	soma cruzi			Trypar	nosoma	
Results	Groups	braziliens	sis donovani	infantu	m major	mexicana	tarentolae	Distinct genes	TREU927	strain 427	gambiense	Distinct genes	esmeraldo	non- esmerald	unassigned	marinkellei	Sylvio	congolense	evansi	vivax
3124	376	0	0	0	0	0	0	0	0	0	0	3113	637	690	207	613	977	0	0	0
Gene F	Results 2 3 4 5	Geno	me View	Adv	anced Pa	ging												A	dd Colu	mns
<u>ه</u> 🗘 ه	Gene ID		🔷 Organisı	m 🕹 🛟	Geno	mic 🔕 🗧	Product	tion 🙆 🛛	L 🗘 I	nput O	rtholog(s)	3		\$	Ortholog 🚳 Group	+ Paralo	⁹ 🙆 👔	Count	plog 🔕 t	L
TCS	SYLVIO_	000024	T. cruzi Sylv X10/1	vio A 3	DWP02 - 665 (-	000075: r)	retrotranspo (RHS) protei	TcCLB.410923.20, TcCLB.459199.10, TcCLB.4501952.20, TcCLB.459199.10, TcCLB.463155.20, TcCLB.503483.9, TcCLB.503607.4, TcCLB.503861.10,						G5_126555	44	3	1	772		
TCSYLVIO_000061 T. cruzi Sylvio ADWP02000144: retrotransposon hot s X10/1 81 - 671 (+) (RHS) protein, putatin					son hot sp in, putative	ot	TcCL TcCl TcCLE	B.410923.20 LB.463155.2 3.503607.4,), TcCLB. 0, TcCLB TcCLB.50	459199.10, .503483.9, 03861.10,		G5_126555	44	3	1	772				
TCS	TCSYLVIO_000111 T. cruzi Sylvio ADWP02000314: retrotransposon hot spot X10/1 - 653 (+) (RHS) protein, putative				ot	TcCL TcCl TcCLE	B.410923.20 LB.463155.2 3.503607.4,), TcCLB. 0, TcCLB TcCLB.50	459199.10, .503483.9, 3861.10,	0	G5_126555	44	3	1	772					
TCS	SYLVIO_	000114	T. cruzi Sylv X10/1	vio A 2	DWP02 - 661 (+	000331: r ·) (retrotranspo (RHS) protei	son hot sp in, putative	ot	TcCL TcCl TcCLE	B.410923.20 LB.463155.2 3.503607.4,), TcCLB. 0, TcCLB TcCLB.50	459199.10, .503483.9, 3861.10,		G5_126555	44	3	7	772	
TCS	SYLVIO_	000134	T. cruzi Sylv X10/1		DWP02	000370: r	retrotranspo (RHS) protei	son hot sp	ot	TcCL TcCl	B.410923.20 B.463155.2), TcCLB.	459199.10, 503483.9.	0	G5_126555	44	3	1	772	

- 10. Finding genes with mass spec evidence in *P. berghei* gametocytes. Note: For this exercise use <u>http://www.plasmodb.org</u>
- a. Find all *P. berghei* genes that have mass spec evidence in either or both male and female gametocytes.

(*hint*: mass spec searches are in the "protein expression" expression section. Either or both is the Union of both results, not the intersection).

- How many genes did you get? How did you get to this number?
- Try running this search in two different ways:

- i. Select both male and female gametocyte options and run the search.
- ii. Select one of them first, run the search then add the other one using the add step button. How did you combine the two steps? Do you get the same results as in (i)?
- b. Find all genes that have mass spec evidence in both male and female gametocytes.

(*hint*: use the strategy you developed in (ii) to get this answer, but change the union into an intersection).

c. Find genes that have mass spec evidence only in male gametocytes and not in female ones.

(hint: modify the set operation in b).

d. Find genes that have mass spec evidence only in female gametocytes and not in male ones.

(hint: modify the set operation in b).

e. Which female gametocyte gene has the highest number of peptide sequences?

(*hint*: look at the "number of peptide sequences" column in the list of results).

f. What does the distribution of peptides in the gene from 'e' look like? (*hint*: go to the gene page and look at the "Protein features" section, or go to the genome browser from the gene page and turn on the right tracks).

11. Finding genes with evidence of phosphorylation in intracellular *Toxoplasma* tachyzoites.

Note: For this exercise use http://www.toxodb.org

Hint: phosphorylated peptides can be identified by searching the appropriate experiments in the <u>Mass Spec Evidence</u> search page.

a. Find all genes with evidence of phosphorylation in intracellular tachyzoites. Select the "Infected host cell, phosphopeptideenriched (peptide discoverv against TgME49)" sample under experiment called the "Tachyzoite phosphoproteome from purified parasite or infected host cell (RH) (Treeck et al.)"

b. Remove all genes with phosphorylation evidence from purified extracellular tachyzoites.

c. Remove all genes present in the phosphopeptide-depleted fractions (select both intracellular and extracellular).

d. Explore your results. What kids of genes did you find? Are any of these results to be secreted? (*Hint*: add a step searching for genes with secretory signal peptides).

My Strat	egies: New	Opened (1)	All (2)	💮 Bas	ket	Examples	Help					
(Genes)									Strategy: Mass Spec *				
Mass Sp 2574 Ger Step 1	Mass Spec 3180 Genes Dec nes 162 Genes Step 2	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Genes Genes Genes Genes		Signal P 9672 Gen 9 Genes Step 4	Edit P S Edit	Add St	tep	Rename Duplicate Sare Share Delete				
9 Genes Strategy:	9 Genes from Step 4 Strategy: Mass Spec Add 9 Genes to Basket Download 9 Genes Add 9 Genes to Basket Download 9 Genes												
All Results	Ortholog Groups	i <i>sma gondii</i> 1-redundant	Tox GT1 I	oplasm ME49	a gondii VEG RH	Neos	spora caninum	Eimeria tenella]				
9	9 9	9	0 0	99	0 0 0	D	0	0]				
	by strains (advanced) (sults Genome View	results remove	ed by the	filter will	not be comt	ined into	the next step.)		-				
	Advanced Paging	J							Add Columns				
٢	🗘 Gene ID						Product	Description	۵ 💼				
	TGME49_288880						hypothetical						
	TGME49_257568						hypothetical protein						
TGME49_229680							hypothetical						
TGME49_231180							hypothetical protein						
TGME49_269420							hypothetical protein						
TGME49_200440							hypothetical	protein					
TOME49_216840							hypothetical	protein					
	TGME49_219640						hypothetical	protein					
	Advanced Paging												

e. Pick one or two of the hypothetical genes in your results and visit their gene pages. Can you infer anything about their function? (*Hint*: explore the protein and expression sections).

f. What about polymorphism data? Go back to your strategy and add columns for SNP data found under the population section. Explore the gene page for the gene that has the most number of nonsynonymous SNPs.

G	Gene Results Genome View														
	Advanced Paging Add Columns														
	韋 Gene ID	Product Description 3 1	♣ Nonsynonymous ♥ SNPs All Strains	Synonymous	➡ Total HTS SNPs All Strains	➡ Total HTS Non- ♥ Synonymous SNPs	Synonymous SNPs								
	TGME49_219640	hypothetical protein	33	60	383	81	302								
	TGME49_308070	hypothetical protein	20	34	188	42	146								
	TGME49_288880	hypothetical protein	17	27	221	52	169								
	TGME49_200440	hypothetical protein	14	13	72	36	36								
	TGME49_216840	hypothetical protein	13	42	189	71	118								
	TGME49_269420	hypothetical protein	9	27	45	31	14								
	TGME49_257568	hypothetical protein	5	16	30	20	10								
	TGME49_231180	hypothetical protein	3	15	54	24	30								
	TGME49_229680	hypothetical protein	0	6	33	2	31								
	Advanced	Paging													