## Exploring Metabolic Pathways and Compounds Exercise 5

1. Find the metabolic pathway for glycolysis. For this exercise use <u>http://plasmodb.org</u>

 Metabolic pathway and compound searches are available under the "Identify Other Data Types" heading on the home page. To find metabolic pathways by name, click on the "Pathway/Name/ID" option under the heading "Metabolic Pathways".

| Identify Other Data Types:   |
|------------------------------|
| Expand All   Collapse All    |
| Genomic Sequences            |
| Genomic Segments (DNA Motif) |
| SNPs                         |
| ESTs                         |
| H ORFs                       |
| H SAGE Tags                  |
| Metabolic Pathways           |
| Pathway Name/ID              |
| Genes                        |
| Compounds                    |
| 🗄 Compounds 💷                |
|                              |

- This search provides type-ahead options.

| Identify Me                                                                                      | tabolic Pathways based on Pathway                                    | Name/ID 💷 |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|
| Pathway Name or ID 🕗                                                                             | glyco                                                                | 1         |
|                                                                                                  | Glycosaminoglycan biosynthesis - chondroitin sulfate (ec00532)       |           |
|                                                                                                  | Glycosphingolipid biosynthesis - globo series (ec00603)              |           |
|                                                                                                  | Glycosphingolipid biosynthesis - lacto and neolacto series (ec00601) |           |
|                                                                                                  | Glycosylphosphatidylinositol(GPI)-anchor biosynthesis (ec00563)      |           |
| Description                                                                                      | Glycosaminoglycan degradation (ec00531)                              |           |
| Description                                                                                      | Glycosphingolipid biosynthesis - ganglio series (ec00604)            |           |
| Find Pathways by Pathway Name.                                                                   | Glycosaminoglycan biosynthesis - keratan sulfate (ec00533)           |           |
| Data Sets used by this search                                                                    | Glycosaminoglycan biosynthesis - heparan sulfate (ec00534)           |           |
| but bets used by this search                                                                     | Glycolysis / Gluconeogenesis (ec00010)                               |           |
| <ul> <li>KEGG Metabolic Pathways<br/>Metabolic Pathways and associations to Compounds</li> </ul> | and EC Numbers                                                       | 9         |

Once vou find glycolysis, the result page will display a KEGG graphical representation of the pathway. Examine the pathway – What do the rectangles with numbers like 2.7.1.11 represent? What do the circles represent? What do the colors mean? (Note that you can over the mouse various elements in the pathway to reveal popups with additional information).

-

- Find the rectangle representing 6phosphofructokinas e. (hint: its EC number is 2.7.1.11).
- Do you believe that this enzyme is only present in Ρ. falciparum? What are some possibilities? How can you determine if this enzyme has orthologs in other Plasmodium species? (hint: you



can click on the enzyme name in the popup).

- Once you click on the enzyme name/EC no. What results did you get? How can find orthologs of this gene in other *Plasmodium* species?

| My Str           | rategie                  | s: Nev              | N [        | 0     | nened (1)    | All (2)        | @ Bas     | ket             | Example      | es Help    |                     |              |                                                   |
|------------------|--------------------------|---------------------|------------|-------|--------------|----------------|-----------|-----------------|--------------|------------|---------------------|--------------|---------------------------------------------------|
| (Genes)          | accigne                  |                     |            |       |              | / ur (2)       |           |                 | Example      |            |                     | Strategy: E  | C Number(2) * 🛛 🔀                                 |
| EC N<br>20<br>St | Number<br>Genes<br>tep 1 | Add                 | Step       |       |              |                |           |                 |              |            |                     |              | Rename<br>Duplicate<br>Save As<br>Share<br>Delete |
|                  |                          |                     |            |       |              |                |           |                 |              |            |                     |              |                                                   |
| 2 Gene<br>Strate | es fron<br>egy: EC       | n Step 1<br>Number( | 2)         |       |              |                |           |                 |              |            | Add 2 Ge            | enes to Bask | et   Download 2 Genes                             |
| All              | Ortholog                 | Plasmoo<br>falcipar | lium<br>um | ms re | Plasmodium   | will not be    | Plasmod   | lium yoei       | lii          | Plasmodium | Plasmodium          | Plasmodiur   | m Plasmodium                                      |
| Results          | Groups                   | Distinct genes      | 3D7        | π     | vivax        | Distii<br>gene | nct<br>es | yoelii<br>17XNL | yoelii<br>YM | berghei    | chabaudi            | knowlesi     | cynomolgi                                         |
| 2                | 2                        | 2                   | 2          | 0     | 0            | 0              |           | 0               | 0            | 0          | 0                   | 0            | 0                                                 |
| Gene             | Results                  | Genome              | e Viev     | v     |              |                |           |                 |              |            |                     |              |                                                   |
|                  | Ad                       | vanced Pagir        | ng         | )     |              |                |           |                 |              |            |                     |              | Add Columns                                       |
| <b>^</b>         | 🗘 Gene                   | ID                  |            |       | 🗘 Genomic L  | ocation        | 8         |                 |              |            | Product Description | ption 🕹 🔒    |                                                   |
|                  | PF3D7_0                  | 915400              |            |       | Pf3D7_09_v3: | 650,585        | - 654,841 | (-)             |              |            | 6-phosphofructokina | ase (PFK9)   |                                                   |
|                  | PF3D7_1                  | 128300              |            |       | Pf3D7_11_v3: | 1,098,16       | 7 - 1,103 | 555 (-)         |              |            | 6-phosphofructokina | ase (PFK11)  |                                                   |
|                  | Ad                       | vanced Pagir        | ng         |       |              |                |           |                 |              |            |                     |              |                                                   |

Orthologs can be identified by add an "ortholog transform" step to the search strategy. (hint: click on add step, then select ortholog transform from the popup window. Next select the organisms you want to transform to and click on get answer).

|                  |                                 |                           |                                      | _                  |          |                        |                     |                      |                               |                      |      |                       |          |                     |                        |                                                   |
|------------------|---------------------------------|---------------------------|--------------------------------------|--------------------|----------|------------------------|---------------------|----------------------|-------------------------------|----------------------|------|-----------------------|----------|---------------------|------------------------|---------------------------------------------------|
| My Str           | ategi                           | es:                       | New                                  | /                  | Ope      | ned (1)                | All (2)             | 🗁 B                  | asket                         | Exampl               | es   | Help                  |          |                     |                        |                                                   |
| (Genes)          | Number<br>Genes<br>Sep 1        | <b>]→∑</b>                | Ortho<br>18 Ge<br>Step               | logs<br>mes<br>o 2 |          | Add Ste                | þ                   |                      |                               |                      |      |                       | Strat    | egy: EC Nur         | nber(2)                | Rename<br>Duplicate<br>Save As<br>Share<br>Delete |
|                  |                                 |                           |                                      |                    |          |                        |                     |                      |                               | -                    |      |                       |          |                     |                        |                                                   |
| 18 Ger<br>Strate | nes fro<br>gy: E(<br>ter result | om St<br>C Num<br>s by sp | tep 2<br>aber(2                      | 2)<br>(resu        | lts remo | ved by the filte       | r will not be       | combir               | ed into the n                 | ext step.)           |      |                       |          | Add 18 Ger          | es to Basket   Do      | wnload 18 Genes                                   |
| All<br>Results   | Ortholog<br>Groups              | Pi<br>f<br>Dist<br>ger    | lasmodi<br>'alciparu<br>tinct<br>nes | ium<br>Im<br>3D7   | π        | Plasmodium<br>vivax    | Dist                | Plasi<br>inct<br>ies | nodium yoe<br>yoelii<br>17XNL | lii<br>yoelii<br>YM  | ,    | Plasmodium<br>berghei | Pla<br>c | ismodium<br>habaudi | Plasmodium<br>knowlesi | Plasmodium<br>cynomolgi                           |
| 18               | 2                               | 2                         | 2                                    | 2                  | 2        | 2                      | 2                   | 1                    | 2                             | 2                    |      | 2                     |          | 2                   | 2                      | 2                                                 |
| Gene             | Results                         | G                         | enome<br>d Pagin                     | Viev               | v ]      |                        |                     |                      |                               |                      |      |                       |          |                     |                        | Add Columns                                       |
| ۵ 🗘              | Gene II                         | <b>b</b>                  | ‡ Or                                 | gan                | ism 🚳    | Genor                  | nic<br>on           | ۵                    | ♣ Produ                       | ct 🗿                 | •    | Input<br>Ortholog     | (s) 🕹    | Crtholog            | 3 Paralog 3            | Count                                             |
| 💮 PB             | ANKA_0                          | 81640                     | P. ber                               | rghei              | ANKA     | berg08:<br>663,800 -   | 667,699             | (-)                  | 6-phospho<br>putative (F      | ofructokina<br>PFK9) | ase, | PF3D7_09              | 15400    | OG5_131114          | 0                      | 8                                                 |
| PC               | HAS_08                          | 1670                      | P. cha<br>chaba                      | abau<br>audi       | di       | chab08:<br>663,665 -   | 667,585             | (-)                  | 6-phospho<br>putative (F      | ofructokina<br>PFK9) | ase, | PF3D7_09              | 15400    | OG5_131114          | 0                      | 8                                                 |
| 💮 PC             | YB_072                          | 300                       | P. cyr<br>strain                     | nomo<br>B          | lgi      | DF15709<br>609,997 -   | 9:<br>614,316       | (-)                  | 6-phospho                     | ofructokina          | ase  | PF3D7_09              | 15400    | OG5_131114          | 0                      | 8                                                 |
| 🗇 PF             | 3D7_09 <sup>.</sup>             | 15400                     | P. falo<br>3D7                       | cipan              | um       | Pf3D7_09<br>650,585 -  | v3:<br>654,841      | (-)                  | 6-phospho<br>(PFK9)           | ofructokina          | ase  | PF3D7_091             | 15400    | OG5_131114          | 0                      | 8                                                 |
| 🗇 PF             | IT_0915                         | 500                       | P. falo                              | cipan              | um IT    | PfIT_09_<br>631,981 -  | /2:<br>636,234      | (-)                  | 6-phospho                     | ofructokina          | ase  | PF3D7_09              | 15400    | OG5_131114          | 0                      | 8                                                 |
| 🗇 PK             | H_0712                          | 70                        | P. kno<br>H                          | owles              | si strai | Pk_strain<br>623,627 - | H_chr07:<br>627,880 | (-)                  | 6-phospho<br>putative (F      | ofructokina<br>PFK9) | ase, | PF3D7_091             | 15400    | OG5_131114          | 0                      | 8                                                 |
| ⊕ PV             | X_09920                         | 00                        | P. viv                               | ax S               | al-1     | PviS_CM<br>580,105 -   | 000448:<br>584,765  | (-)                  | 6-phospho<br>putative         | ofructokina          | ase, | PF3D7_09              | 15400    | OG5_131114          | 0                      | 8                                                 |
| 💮 PY             | 01321                           |                           | P. you                               | elii yo<br>IL      | pelii    | AABL010<br>3.716 - 7   | 00347:<br>645 (-)   |                      | pyrophosp                     | phate-               |      | PF3D7_091             | 15400    | OG5_131114          | 0                      | 8                                                 |

- What do your results show? Is 6-phosphofructokinase unique to *P. falciparum*?

- Compound records can be accessed by running a specific compound search available under "Identify Other Data Types" heading on the home page. Compound records can also be accessed form the mouse over popups in a metabolic pathway.
- Find Phosphoenolpyruvate (PEP) and visit its record page.
  - PEP can be identified using a specific compound search. For example, compounds may be identified by ID, text search, metabolic pathway, Molecular formula, molecular weight and metabolite levels.
  - Choose one of these options to identify PEP. For example, you can type phosphoenolpyruvate in the compound text search:

| Idei | ntify Other Data Types:      |
|------|------------------------------|
|      | Expand All   Collapse All    |
|      | Isolates                     |
|      | Genomic Sequences            |
| H    | Genomic Segments (DNA Motif) |
|      | SNPs                         |
|      | ESTs                         |
|      | ORFs                         |
|      | SAGE Tags                    |
| H    | Metabolic Pathways           |
|      | Compounds                    |
|      | Compound ID                  |
|      | Text (synonym, InChl, etc.)  |
|      | Enzymes<br>Motobolic Pothway |
|      | Molecular Formula            |
|      | Molecular Weight             |
|      | Metabolite levels            |
|      |                              |

| Identify Compou                 | inds based on Text (synonym, InChI, etc.) 💷                                                                                             |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Text term (use * as wildcard) 📀 | phosphoenolpyruvate                                                                                                                     |
| Fields 🔮                        | <ul> <li>Property (IUPAC Name, InChI, SMILES, Mass)</li> <li>Synonym</li> <li>Reaction/Pathway/Enzyme select all   clear all</li> </ul> |
|                                 | Advanced Parameters                                                                                                                     |
|                                 | Get Answer                                                                                                                              |

 PEP can be found in a metabolic pathway where it is present as a substrate or a product of an enzymatic reaction (ie. glycolysis). (hint: click on the compound ID in the popup).



- Examine the PEP record page. Note that sections (ie. Metabolic Pathway Reactions) may be expanded by clicking on the "show" link.
- Under which conditions is PEP most highly? (hint: examine the "Mass Profiles for Compounds" section).



- 3. Identify metabolites (compounds) that are 20-fold enriched at pH7.4 in saponin lysed infected red blood cell (iRBCs) pellets compared the pH7.4 percoll pellet.
  - This requires running a metabolite levels search (20-fold enriched in saponin pellet compared to the percoll pellet as the reference).

| de | ntify Other Data Types:                                                          |
|----|----------------------------------------------------------------------------------|
|    | Expand All   Collapse All<br>Isolates                                            |
|    | Genomic Sequences<br>Genomic Segments (DNA Motif)<br>SNPs                        |
|    | ESTs<br>ORFs                                                                     |
|    | SAGE Tags<br>Metabolic Pathways                                                  |
|    | Compounds ETA<br>Compound ID                                                     |
|    | Text (synonym, InChI, etc.)<br>Enzymes<br>Metabolic Pathway<br>Molecular Formula |
|    | Molecular Weight<br>Metabolite levels                                            |

| Identify Co                                                 | mpounds based on Metabolite levels 🖭                                                                             |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Experiment 🕐<br>Reference Samples 📀<br>Comparison Samples 📀 | Effect of pH on metabolite levels (Lewis, Baska and Llinas)     Percoll pH 7.4 pellet      Saponin pH 7.4 pellet |
| Fold change >= 🔮                                            | 20      Advanced Parameters      Get Answer                                                                      |

- How many compounds did you get?

- How many of these metabolites are not enriched (by 20-fold) in pH7.4 saponin media fraction compared to the Percoll media fraction? (hint: this will require adding a second step and using a subtraction operation).

| My Strategies:                                      | New      | Opened (1)                                                 | All (2)                                                        | 🗇 Basket    | Examples         | Help                                                                                                                |                                       |                          |                           |                                         |
|-----------------------------------------------------|----------|------------------------------------------------------------|----------------------------------------------------------------|-------------|------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|---------------------------|-----------------------------------------|
| (Compounds)                                         |          |                                                            |                                                                |             |                  |                                                                                                                     |                                       | Strategy                 | : fold chang              | e(2) * 🛛 🔯                              |
|                                                     |          |                                                            |                                                                |             |                  | Add Step                                                                                                            |                                       |                          | ×                         | Rename                                  |
| <sup>12</sup> fold change<br>12 Compounds<br>Step 1 | Add Step | Run a new S<br>Add content<br>Add existing<br>Transform to | Search for<br>s of Basket<br>Strategy<br>o Genes<br>o Pathways | Compounds   |                  | Compound ID<br>Text (synonym,<br>Enzymes<br>Metabolic Pathy<br>Molecular Form<br>Molecular Weigl<br>Metabolite leve | InChi, etc.)<br>vay<br>ula<br>ht      |                          |                           | Duplicate<br>Save As<br>Share<br>Delete |
|                                                     |          |                                                            | Add                                                            | Step 2 : Me | etabolite l<br>E | evels                                                                                                               | <ul> <li>Effect of pH on m</li> </ul> | etabolite levels (Lewis, | Close<br>Baska and Llinas | )                                       |
|                                                     |          |                                                            |                                                                |             | Reference        | e Samples 😗 🧻                                                                                                       | Percoll pH 7.4 media                  | a ‡                      |                           |                                         |
|                                                     |          |                                                            |                                                                |             | Compariso        | n Samples 📀 🧻                                                                                                       | Saponin pH 7.4 med                    | ia ‡                     |                           |                                         |
|                                                     |          |                                                            |                                                                |             | Fold             | change >= 🔞 🗌                                                                                                       | 20                                    |                          |                           |                                         |
|                                                     |          |                                                            |                                                                |             |                  | . ∎ Ad                                                                                                              | vanced Parameters                     |                          |                           |                                         |
|                                                     |          |                                                            | Com                                                            | bine Comp   | ounds in 9       | Step 1 wi                                                                                                           | th Compou                             | nds in Step              | 2:                        |                                         |
|                                                     |          |                                                            |                                                                |             | $\odot$ (        | 1 Inters                                                                                                            | ect 2 💿 🔘                             | 1 Minus 2                |                           |                                         |
| (Compounds)                                         |          |                                                            |                                                                |             |                  | 1 Union                                                                                                             |                                       | 2 Minus 1                |                           |                                         |
| (compounds)                                         |          |                                                            |                                                                |             |                  |                                                                                                                     |                                       |                          |                           |                                         |
| fold change     12 Compour                          | <u>e</u> | fold change     2 Compound                                 | e<br>Is                                                        | Add St      | ep               |                                                                                                                     | Run Step                              |                          |                           |                                         |

- To which metabolic pathways do these compounds belong? (hint: click on add step and transform the results to metabolic pathways).

| y Strategies                                       | New Opene                                            | d (1) All (2)                                                   | 💮 Basket 🛛 Exa        | mples Help                  |              |                                                            |                                     |
|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------------------|--------------|------------------------------------------------------------|-------------------------------------|
| athways)                                           | <ul> <li>fold change</li> <li>2 Compounds</li> </ul> |                                                                 |                       |                             | Strateg      | jy: fold change(2)                                         | *<br>Rename<br>Duplicate<br>Save As |
| * fold change<br>12 Compounds<br>Step 1            | 11 Compounds<br>Step 2                               | 15 Pathways<br>Step 3                                           | Add Step              |                             |              |                                                            | Share<br>Delete                     |
|                                                    |                                                      |                                                                 | _                     | _                           |              |                                                            |                                     |
| 5 Metabolic F<br>trategy: fold<br>Metabolic Pathwa | Pathways from Ste<br>change(2)<br>ay Results         | p 3                                                             | A                     | Add 15 Metaboli             | c Pathways t | o Basket   Download 15 M                                   | etabolic Pathwa                     |
| Adva                                               | nced Paging                                          |                                                                 |                       |                             |              |                                                            | Add Columns                         |
| □ <b>‡</b> Pathway<br>Id                           | 🗘 Pathway 🎱                                          | 🗘 Source 🎱                                                      | ♣ No. of<br>Compounds | Total<br>Pathway<br>Enzymes |              | I Pathway 🕢 Map - Pai<br>Transforr<br>Compounds<br>window) | inted With<br>ned 3<br>Ids (new 3   |
|                                                    | Purine metabolism                                    | Metabolic<br>Pathways -<br>KEGG                                 | 2                     | 106                         | 92           | Patr                                                       | nway Map                            |
| 🗇 ec00030                                          | Pentose phosphate<br>pathway                         | Metabolic<br>Pathways -<br>KEGG                                 | 1                     | 37                          | 32           | Path                                                       | тway Мар                            |
| n ec00052                                          | Galactose metabolism                                 | Metabolic<br>Pathways -<br>KEGG                                 | 1                     | 37                          | 41           | Patr                                                       | пway Мар                            |
| 🗇 ec00053                                          | Ascorbate and aldarate<br>metabolism                 | Metabolic<br>Pathways -<br>KEGG                                 | 1                     | 45                          | 45           | Patr                                                       | пway Мар                            |
| 🗁 ec00270                                          | Cysteine and methionin<br>metabolism                 | <ul> <li>Metabolic</li> <li>Pathways -</li> <li>KEGG</li> </ul> | 1                     | 64                          | 56           | Patr                                                       | пway Мар                            |
| 🗇 ec00290                                          | Valine, leucine and<br>isoleucine biosynthesis       | Metabolic<br>Pathways -<br>KEGG                                 | 1                     | 18                          | 27           | Path                                                       | nway Map                            |
| @ ec00480                                          | Glutathione metabolism                               | Metabolic                                                       | 1                     | 40                          | 38           | Patt                                                       | way Map                             |