Polymorphisms, SNPs and Alleles

What are SNPs?

- Single Nucleotide Polymorphisms
 - Differences between individuals (used in forensics)
 - EuPath: differences between strains / isolates
 - Kinetoplastida are diploid so will also have allelic SNPs within strain
 - Genes that are different due to SNPs are alleles.
 - Does not include indels currently

tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	ATTCGATGCGCAGAGGAGCTACAGAGACGGAGCGCACTGAAGCTTTTGCCAAAGAC ATTCGATGCGCAGAGGAGGAACTACAGAGACGGAGCGGCACTGAAGCTTTTGCCAAAGAC ATTCGATGCGCAGAGGAGGAACTACAGAGACGGAGCGGTACTGAAGCTTTTGCCAAAGAC ATTCGCTGCGCAGAAGAAGACGCAAAGACGCAGCGCACCGAGGCGTTCGCCAAAGAC	0631
tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	TTACTTCTCCTCTTGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG TTGCTTCTCCTCCTCGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG TTGCTTCTCCTCCTCGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG CTTCTCCCTCCTCGTCGGGGCAGACGCCCTGCCCCTGCGAAACAGGCTGGTAAGCCA	571
tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	GCGGCGACGAAGGGTGGCTCTGAAGAGC GCGGCGACGAAGGGTGGCTCTGAAGAGC GCGGCGGCGACGAAGGGTGGCTCTGAAGAGC CCCGCGGCGACGACGTCGCGCGCCCACGCGAAGGCGAGAAAAAGGGGAAGCGTTTGAGC	9540

What can we do with SNPs?

Genes

- Identify genes that are appear to be under selection based on SNP characteristics.
 - Number of SNPs (coding, non-coding, synonymous etc)
 - Ratio of non-synonymous / synonymous indicates whether genes are under purifying or diversifying (balancing) selection.
- SNPs are genetic markers
 - Distinguish specific strains / isolates.
 - Enable fine structure mapping of phenotypes in genetic crosses or association studies.
- Have sets of queries against SNPs to identify SNPs based on a variety of characteristics.
 - Location (on chromosome or within genes)
 - Allele frequency
 - Presence in isolate assays
 - Isolate characteristics

Purifying vs. Diversifying selection

- Purifying selection (gene is evolutionarily constrained to maintain the primary amino acid sequence)
 - Genes that have a low Non-synonymous / Synonymous ratio
 - Tend to be genes critical for basic metabolic processes such as enzymes, cell cycle related etc.
 - Due to very high A/T bias in falciparum, best comparator is P. reichenowi.
- Diversifying selection (it is evolutionarily advantageous to quickly change the amino acid sequence)
 - Genes that have a high Non-synonymous / Synonymous ratio.
 - Tend to be things like surface antigens that the organisms use to escape immune detection.
 - Use comparators high on the list (have more sequence coverage and thus more SNPs). Reichenowi frequently is not a good comparator because these genes are changing so rapidly that they may not be conserved well enough to call SNPs.

Alleles in ToxoDB

- ToxoDB contains three Toxoplasma strains fully sequenced and annotated. Other species are not far behind (E. Histolytica, T. brucei, P. falciparum ...)
 - Ideally, there would be a 1-1-1 mapping for genes but this is not always the case.
- Results of gene queries are filtered by strain and species in the case of Neospora.
- Functional data (expression, proteomics) is all mapped to ME49 currently.
- This means that care must be taken when constructing Toxoplasma strategies as instances from different strains won't intersect even though they may be from the same gene.
- We use the "Expand" function under add step to expand a result into all the instances (alleles) for that query set.