
Orthology and Phyletic Patterns

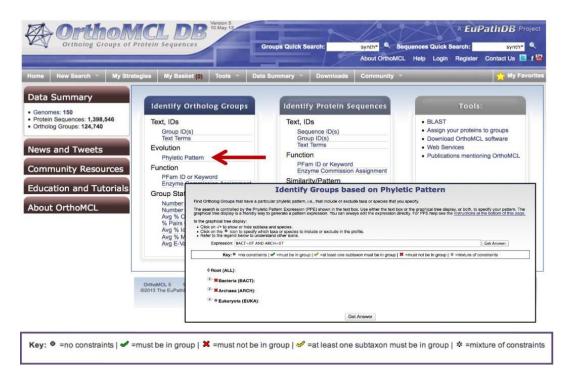
Homology

Getting to OrthoMCL from EuPathDB databases Note: For this exercise use <u>http://cryptodb.org</u> and <u>http://orthomcl.org/</u>

- a. Go to the gene page for the Cryptosporidium muris gene with the ID: CMU_034340
- b. What information on the gene page can you use to guess a function for this gene? It is annotated as a hypothetical protein! Hint: look at the orthologs table and the domains in the protein features graph. You may also want to visit some of the external links or take a look at InterPro domains.
- c. Go to the Orthology and Synteny section and look at the table labeled "Orthologs and Paralogs within CryptoDB". Does this gene have orthologs in other *Cryptosporidium* species? What about other organisms? (hint: click on the Ortholog Group link above the table).

▼ Orthologs and Paralogs within EuPathDB Seta sets

To run Clustal Omega, select genes from the table below. Then choose the sequence type and initiate the alignment with the 'Run Clustal Omega for selected genes' button.


It Omega	↓† Gene	↓† Organism	‡† Product	is syntenic	It has comments
	CHUDEA7_2290	Cryptosporidium hominis UdeA01	unspecified product	yes	no
8	CMU_034340	Cryptosporidium muris RN66	hypothetical protein, conserved	yes	no
8	CTYZ_00000830	Cryptosporidium tyzzeri isolate UGA55	rRNA-processing protein Fcf1/Utp23	yes	no
	ChTU502y2012_407g1140	Cryptosporidium hominis isolate TU502_2012	Fcf1	yes	no
	Chro.70261	Cryptosporidium hominis TU502	hypothetical protein	yes	no
	CmeUKMEL1_04220	Cryptosporidium meleagridis strain UKMEL1	Fcf1 family protein	yes	no
0	GY17_00002025	Cryptosporidium hominis isolate 30976	rRNA-processing protein Fcf1/Utp23	yes	no
	cand_030400	Cryptosporidium andersoni isolate 30847	hypothetical protein	yes	no
	cubi_02904	Cryptosporidium ubiquitum isolate 39726	hypothetical protein	yes	no
	Cvel_467	Chromera velia CCMP2878	rRNA-processing protein FCF1 homolog, putative	no	no
	GNI_088410	Gregarina niphandrodes Unknown strain	rRNA-processing Fcf1-like protein	no	no
	Vbra_6876	Vitrella brassicaformis CCMP3155	rRNA-processing protein FCF1 homolog, putative	no	no

d. What about orthologs in organisms not in EuPathDB? (hint: click on the Ortholog Group link above the table). Does it have any orthologs in bacteria or archaea? (Hint: mouse over the colorful boxes in the table to reveal the full species and phylum names).

								G	rou	p: (OG	5_1	127	67	9											
									(1	10 s	sequ	Jeno	ces)													
								A	dd to Ba	sket) A	dd to Fa	vorites	à												
Gequences & S	tatistics	PFam	domai	ins (gra	phic)	PFa	ım doi	mains	(deta	ils)	M	SA	Clu	ister g	graph											
hyletic Distrit	ution Hid	е																								
	0 no orth 1 one or n more t	tholog	ortholo	g			ØEU	JGL] Ø 🧧	MOE META	88	- 0 - 0 - 0	VIRI												
saur cper	pant Imon	spne cbot				t sent	cbur	vcho	ypes	sfle 0	ftul	ecol		WSUC	rpro	wend	bsui	atum	rtyp		cpne				ctep	tmar
0 0 mlep syne	0 0 rbal tpal	0 0 aaeo nma	0	0	0 0 ssol mse	0 d ihos	0	0	0 nequ	0 halo	0	0 mmar	0	0 mjan	0	0 msmi	0 Ibra	0	0 Imex	0 tviv	0 tcon	0 tbrg	0 Imai	0 linf	0 tcru	0 einv
0 0	0 0	0 1	0	0	0 0	0	0	0	0	0	1	1	0	1	0	0	1	2	1	1	1	1	1	1	2	1
edis ddis	ehis gthe	rcom atha	osat		2 1	u crei	vcar	tpse	cmer	the	pviv 1	pfal	pber	pyce 1	pkno	pcha	tpar	tann	bbov	cmur	tgon	ncan	cpar	chom	aory	ylip
spom psti	nora scer		n cpos	calb r	ngri klad	dhan	anid	afum	gzea	cgla	ecun	eint	ebie	pchr	Ibic	cneg	cneo	isca	dmel	aaeg	bmor	amel	cpip	phum	apis	agam
spont par l	1 1	1 1	1	2	0 1	1	1	1	1 ptro	1 ecab	1 ggal	1 cele	1 bmaa	1	1	1	1	1 glae	1	1	1	1	1	1	1	1
1 1	drer trub	tnig cint	oana	mor h	nsap mmu			clup																		

- e. Take a look at the PFAM domain architectures found under the PFam domains (graphic) tab. Do all the proteins in this group have similar domain architecture?
- f. Based on the orthologs, what do you think this protein might be doing? If you had to give this gene a name, what would you call it?
- 2. Using the phyletic pattern tool in OrthoMCL Note: For this exercise use <u>http://orthomcl.org/</u>

How many protein groups in OrthoMCL <u>do not</u> have any orthologs in bacteria or archaea? (Hint: go to the "Phyletic Pattern" search in the Evolution section of the "Identify Ortholog Groups" category). To specify a phyletic pattern click on the icon next to the taxonomic group or species to include or exclude it.

- a. How many protein groups do not contain orthologs from eukaryotes?
- b. Find all groups that contain orthologs from at least one species of *Cryptosporidium* and *Giardia* but not from bacteria or archaea. If you are getting frustrated trying to figure this one out you have a right to be! You cannot answer this question by using the check boxes (we will discuss why). However, OrthoMCL has an added feature that allows you to enter an expression to define the phyletic pattern. This option provides additional flexibility. Can

In the graphical tree display:	
 Click on -/+ to show or hide subtaxa and species. Click on the [©] icon to specify which taxa or species to include or exclude in the profile. Refer to the legend below to understand other icons. 	
Expression: EUKA>=5T AND hsap>=10	Get Answer
Key: 🍳 =no constraints 🖋 =must be in group 🥩 =at least one subtaxon must be in group 🗮 =must not be in group 🌣	=mixture of constraints
Root (ALL):	
[⊕] ● Bacteria (BACT):	
🐨 👁 Archaea (ARCH):	
^{⊕–} ● Eukaryota (EUKA):	
Get Answer	

you figure out what expression to use to answer this question? (hint: scroll down to the bottom of the page to find additional information about expression parameters.

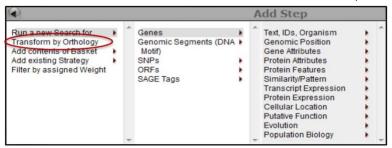
Before looking at the answer below, try this on your own or with the people sitting next to you.

```
Expression: BACT=0T AND ARCH=0T AND chom+cmur+cpar>=1T AND glam+glab+glae>=1T Get Answer
```

All EuPathDB sites also have a phyletic pattern search that uses OrthoMCL data under Genes - > Evolution -> Orthology Phylogenetic Profile. This search is very useful to identify genes in your organism of interest that are restricted in their profile. For example, you frequently want to identify genes that are conserved among organisms in your genus but not present in the host as these genes may make good drug targets or vaccine candidates. Optional: go to your favorite EuPathDB site and run this search to identify all genes that are not present in human or mouse.

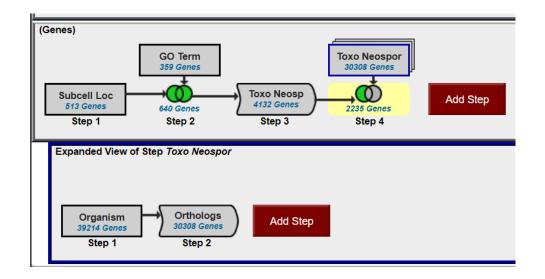
3. Using the orthology transform tool to identify apicoplast targeted genes in *Toxoplasma* and *Neospora*.

Note: For this exercise use <u>http://eupathdb.org</u>



The apicoplast likely became encased in four membranes via a double endosymbiotic event. The chloroplast arose by engulfment of a cyanobacteria by a plant/algae ancestor. An algae was then engulfed by the ancestor of all apicomplexans. Thus an apicoplast organelle arose with four membranes.

a. Start by finding genes in *Plasmodium* that are predicted to target to the apicoplast. Hint: click on "Protein targeting and localization" then on "P.f. Subcellular Localization". You can stop with this list of apicoplast genes or you can union these results with a GO term search for GO:0020011, apicoplast : 6 in *P falciparum* 3D7


	Organism
Search for Genes expand all collapse all Find a search	1 selected, out of 329 3D7 ★ Apicomplexa Plasmodium Plasmodium falciparum Ø Plasmodium falciparum 3D7 add these clear these select only these select all clear all
▶ Text	Evidence
 Gene models Annotation, curation and identifiers Genomic Location Taxonomy Orthology and synteny Phenotype 	 ✓ Curated ✓ Computed ✓ Limit to GO Slim terms
 Transcriptomics Sequence analysis Structure analysis Protein features and properties Protein targeting and localization 	 Yes No O GO Term or GO ID
Exported Protein P.f. Subcellular Localization Predicted Signal Peptide Transmembrane Domain Count	GO:0020011 : aplicoplast : 6 ¥ Begin typing to see suggestions to choose from (CTRL or CMD click to select multiple)
Function prediction	O GO Term or GO ID wildcard search
	N/A Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 2: Image: Combine Genes in Step 1 with Genes in Step 2: Image: Combine Genes in Step 2: Image: Com

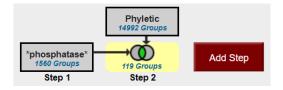
b. Transform the results of the above search to their *Toxoplasma* and *Neospora* orthologs.

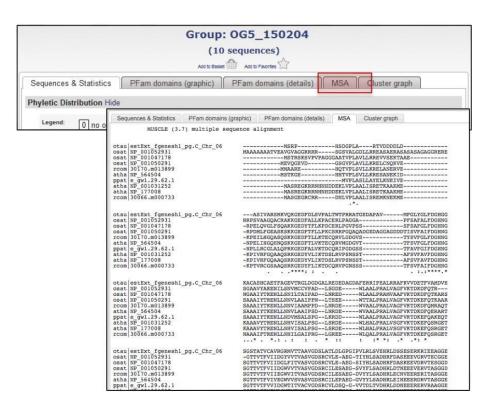
Hint: add a step, then select "Transform by Orthology". On the search page, select all *Toxoplasma* and *Neospora*.

c. Although *Cryptosporidium* is an apicomplexan parasite it has actually lost its apicoplast! Can you use this fact to refine your results from the above search? Hint: try subtracting out any orthologs present in *Cryptosporidium*. You will need to use a nested strategy and use the ortholog transform back to Toxoplasma and Neospora genes for the subtraction to complete.

4. Combining searches in OrthoMCL (Use <u>http://orthomcl.org</u> for this exercise).

Find all plant proteins that are likely phosphatases that do not have orthologs outside of plants.


a. Use the text search **to find OrthoMCL groups** that contain the word "*phosphatase*" (note that the search should be run without the quotation marks but with the asterisks).



b. Add a step and run a phyletic pattern search for groups that contain any plant protein but do not contain any other organism outside plants. (hint: make sure everything has a red x on it except for plants (Viridiplantae (VIRI)), which should be a grey circle).

- Cocciaia (Cocco).	
E Aconoidasida (ACON):	
# Haemosporida (HAEM):	Xpber Xpcha Xpfal Xpkno Xpviv Xpyce
X Piroplasmida (PIRO):	Xbbov Xtann Xtpar
X Amoebozoa (AMOE):	Xddis Xehis Xedis Xeinv
X Euglenozoa (EUGL):	Xibra Xiinf Ximaj Ximex Xtbru Xtbrg Xtcon Xtoru Xt
Viridiplantae (VIRI):	
Streptophyta (STRE):	●atha ●osat ●ppat ●rcom ●micr
Chlorophyta (CHLO):	● crei ● otau ● vcar
Rhodophyta (RHOD):	• cmer
Cryptophyta (CRYP):	• gthe
Bacillariophyta (BACI):	© tpse
🖻 🗱 Fungi (FUNG):	
Microsporidia (MICR):	Xecun Xebie Xeint
Basidiomycota (BASI):	Xoneo Xoneg Xibic Xpchr
	AN A AL AL AL AL AL AL AL AL AL

c. How many groups did you return? Explore the multiple sequence alignments from some of these groups. (Hint: click on a group ID and open the MSA tab).

- 5. Exploring a specific OrthoMCL group examining the cluster graph. (Use <u>http://orthomcl.org</u> for this exercise).
 - a. Visit the orthomcl group OG5_127676. You can either type the ID in the group quick search option at the top of the page of follow this link: http://orthomcl.org/group/OG5_127676
 - b. *Examine the "Sequences & Statistics" tab:* Based on the EC description and the product descriptions of the members of this group, what kind of a proteins are in this group? What is the phylogenetic distribution of the members of this group?

letic	Distr	ibutio	on Hio	le																											
Leger	nd:	1	one oi	holog tholo	g	rtholo	g				Ø <mark>FI</mark> Ø Ø EU			10F 10A		00		OBAC			_										
✓ sho saur			Imon	spne	cbot	bmal	bpse	rsol	yent	sent	⊘ FU		ypes	1 Ø 🚺	ftul	ecol		OEUK		wend	bsui	atum	rtyp	gsul	cpne	mtub	drad	deth	ctep	tmar	mle
0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
syne	rbal	tpal	aaeo	nmar	hbut	smar	ssol	msed	ihos	cmaq	ckor	nequ	halo	tvol	mmar	hwal	mjan	aful	msmi	Ibra	tbru	Imex	tviv	tcon	tbrg	Imaj	linf	tcru	einv	edis	ddi
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	1	1	1	1	1	1	1	4	1	1
obio	athe	rcom	atha	osat	micr	ppat	otau	crei	vcar	tpse	cmer	tthe	pviv	pfal	pber	pyoe	pkno	pcha	tpar	tann	bbov	cmur	tgon	ncan	cpar	chom	aory	ylip	spom	psti	nc
erns																															
1	0	2	4	1	2	1	2	0	1	2	1	1	1	1	1	1	1	_1_	2	2	_ 1			1		0	1	1	1		
1 scer	0 egos	2		1 calb	2 mgri	1 klac	2 dhan	0 anid	1 afum		1 cgla	1 ecun	1 eint	1 ebie	1 pchr	1 Ibic	1 cneg	1 cneo	2 isca	2 dmel	1 aaeg	0 bmor	1 amel	cpip	phum	apis	agam	1 nvec	1 tadh	1 drer	tr
1 scer 1	0 egos 1	2		1 calb 2	2 mgri 0	1 klac 1		0 anid 1	1 afum 1		1 cgla 1	1 ecun 0	1 eint 0	1 ebie 0	1 pchr 0	1 bic 0	1 cneg 0	1 cneo 0			aaeg 2	0 bmor 1	amel 1	cpip 1	0 phum 1	apis 1	agam 1	nvec 1	1 tadh 1	drer 1	tr
1 scer 1 tnig	0 egos 1 cint	2	cpos 1	2	Ő	1 klac 1 mdom	dhan 1	1	1		1	0	1 eint 0 bmaa	0	1 pchr 0 sman	0	0	0	isca 0		2	0 bmor 1	amel 1	cpip 1	phum 1	apis 1	agam 1	nvec 1	1 tadh 1	drer 1	tr

- c. *Examine the "PFam Domains (graphic)" tab:* How many PFam domains are represented in this group? What is the most common one? Which one is the least common one?
- d. *Examine the "Cluster Graph" tab:* Modify the E-value cutoff slider. What happens when you increase or decrease the E-value? Can you identify subclusters?

